ON A FAMILY OF TWO-PARAMETRIC D(4)-TRIPLES

被引:0
|
作者
Filipin, Alan [1 ]
He, Bo [2 ]
Togbe, Alain [3 ]
机构
[1] Univ Zagreb, Fac Civil Engn, Zagreb 10000, Croatia
[2] ABa Teachers Coll, Dept Math, Wenchuan 623000, Sichuan, Peoples R China
[3] Purdue Univ N Cent, Dept Math, Westville, IN 46391 USA
关键词
Diophantine m-tuples; Pell equations; Baker's method; DIOPHANTINE; THEOREM; NUMBER; SETS; K-1;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let k be a positive integer. In this paper, we study a parametric family of the sets of integers {k,A(2)k + 4A, (A + 1)(2)k + 4(A + 1), d}. We prove that if d is a positive integer such that the product of any two distinct elements of that set increased by 4 is a perfect square, then d = (A(4) broken vertical bar 2A(3) broken vertical bar A(2))k(3) broken vertical bar (8A(3) broken vertical bar 12A(2) broken vertical bar 4A)k(2) broken vertical bar (20A(2) broken vertical bar 20A broken vertical bar 4)k broken vertical bar (16A broken vertical bar 8) for 1 <= A <= 22 and A >= 51767.
引用
收藏
页码:31 / 51
页数:21
相关论文
共 50 条
  • [1] Degenerate hypersurfaces with a two-parametric family of automorphisms
    Ezhov, Vladimir
    Kolar, Martin
    Schmalz, Gerd
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2009, 54 (3-4) : 283 - 291
  • [2] A two-parametric family of high rank Mordell curves
    Reynya, Mikhail A.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (03) : 821 - 829
  • [3] Two-parametric PT-symmetric quartic family
    Eremenko, Alexandre
    Gabrielov, Andrei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (17)
  • [4] An efficient two-parametric family with memory for nonlinear equations
    Cordero, Alicia
    Lotfi, Taher
    Bakhtiari, Parisa
    Torregrosa, Juan R.
    NUMERICAL ALGORITHMS, 2015, 68 (02) : 323 - 335
  • [5] An efficient two-parametric family with memory for nonlinear equations
    Alicia Cordero
    Taher Lotfi
    Parisa Bakhtiari
    Juan R. Torregrosa
    Numerical Algorithms, 2015, 68 : 323 - 335
  • [6] Construction of 3D potentials from a preassigned two-parametric family of orbits
    Anisiu, Mira-Cristiana
    Kotoulas, Thomas A.
    INVERSE PROBLEMS, 2006, 22 (06) : 2255 - 2269
  • [7] On the two-parametric theory of superconductivity
    R. O. Zaitsev
    Journal of Experimental and Theoretical Physics Letters, 2004, 79 : 113 - 116
  • [8] A Two-Parametric Family of Asymmetric Exclusion Processes and Its Exact Solution
    M. Alimohammadi
    V. Karimipour
    M. Khorrami
    Journal of Statistical Physics, 1999, 97 : 373 - 394
  • [9] Form factors of exponential fields for two-parametric family of integrable models
    Fateev, VA
    Lashkevich, M
    NUCLEAR PHYSICS B, 2004, 696 (03) : 301 - 350
  • [10] On the two-parametric theory of superconductivity
    Zaitsev, RO
    JETP LETTERS, 2004, 79 (03) : 113 - 116