Endothelium-dependent epithelial-mesenchymal transition of tumor cells: Exclusive roles of transforming growth factor β1 and β2

被引:17
|
作者
Kimura, Chiwaka [1 ]
Hayashi, Masayuki [1 ]
Mizuno, Yuri [1 ]
Oike, Masahiro [1 ]
机构
[1] Kyushu Univ, Grad Sch Med Sci, Dept Pharmacol, Fukuoka 8128582, Japan
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS | 2013年 / 1830卷 / 10期
关键词
Vascular endothelial cell; Tumor cell; Epithelial-mesenchymal transition; Tumor metastasis; Transforming growth factor beta(1); Transforming growth factor beta(2); TGF-BETA; IN-VITRO; CANCER; FIBROBLASTS; RESPONSES; PATHWAYS; MAMMARY; INDUCE; BREAST;
D O I
10.1016/j.bbagen.2013.05.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Induction of epithelial-mesenchymal transition (EMT) is essential for the metastasis of tumor cells and maintaining their sternness. This study aimed to examine whether endothelial cells, which are most closely located to tumor cells in vivo, play a role in inducing EMT in tumor cells or not. Methods: Concentrated culture medium of bovine aortic endothelial cells (BAECs) was applied to tumor cell lines (A549 and PANC-1) and epithelial cell line (NMuMg). Cadherin conversion, expressions of alpha-smooth muscle actin and ZO-1, actin fiber formation and cell migration were examined as hallmarks of the induction of EMT in these cell lines. Transforming growth factor beta (TGF beta) antibodies were used to neutralize TGF beta(1), TGF beta(2) and TGF beta(3). Expression and release of TGF beta proteins in BAECs as well as in porcine and human endothelial cells were assessed by Western blotting and ELISA, respectively. Results: Conditioned medium of BAEC induced EMT in the examined cell lines. All endothelial cells from various species and locations expressed TGF beta(1) and TGF beta(2) proteins and much lower level of TGF beta(3) protein. Conditioned medium from these endothelial cells contained TGF beta(1) and TGF beta(2), but TGF beta(3) could not be detected. Neutralizing antibody against each of TGF beta(1) or TGF beta(2) did not reverse endothelium-dependent EMT, but simultaneous neutralization of both TGF beta(1) and TGF beta(2) completely abolished it. Conclusions: Endothelial cells may play a role in the induction and maintenance of EMT in tumor cells by constitutively releasing TGF beta(1) and TGF beta(2). General significance: The present results provide a novel strategy of the inhibition of tumor metastasis by targeting vascular endothelium. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:4470 / 4481
页数:12
相关论文
共 50 条
  • [1] Induction of epithelial-mesenchymal transition by transforming growth factor β
    Moustakas, Aristidis
    Heldin, Carl-Henrik
    SEMINARS IN CANCER BIOLOGY, 2012, 22 (5-6) : 446 - 454
  • [2] Epithelial-mesenchymal transition induced by transforming growth factor-β1 in mouse tracheal epithelial cells
    Kuroishi, Shigeki
    Suda, Takafumi
    Fujisawa, Tomoyuki
    Ide, Kyotaro
    Inui, Naoki
    Nakamura, Yutaro
    Nakamura, Hirotoshi
    Chida, Kingo
    RESPIROLOGY, 2009, 14 (06) : 828 - 837
  • [3] The Cain and Abl of Epithelial-Mesenchymal Transition and Transforming Growth Factor-β in Mammary Epithelial Cells
    Allington, Tressa M.
    Schiemann, William P.
    CELLS TISSUES ORGANS, 2011, 193 (1-2) : 98 - 113
  • [4] Snail Involves in the Transforming Growth Factor β1-Mediated Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells
    Li, Hui
    Wang, Hongwei
    Wang, Fang
    Gu, Qing
    Xu, Xun
    PLOS ONE, 2011, 6 (08):
  • [5] Epithelial-Mesenchymal Transition and Metastasis under the Control of Transforming Growth Factor
    Tsubakihara, Yutaro
    Moustakas, Aristidis
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (11)
  • [6] Transforming Growth Factor-β1 Induced Epithelial-Mesenchymal Transition in Hepatic Fibrosis
    Bi, Wan-Rong
    Yang, Chang-Qing
    Shi, Qing
    HEPATO-GASTROENTEROLOGY, 2012, 59 (118) : 1960 - 1963
  • [7] Inhibition of transforming growth factor-β release from tumor cells reduces their motility associated with epithelial-mesenchymal transition
    Ohshio, Yasuhiko
    Teramoto, Koji
    Hashimoto, Masayuki
    Kitamura, Shoji
    Hanaoka, Jun
    Kontani, Keiichi
    ONCOLOGY REPORTS, 2013, 30 (02) : 1000 - 1006
  • [8] Mesenchymal stem cells promote pancreatic adenocarcinoma cells invasion by transforming growth factor-β1 induced epithelial-mesenchymal transition
    Zhou, Hai-Sen
    Su, Xiao-Fang
    Fu, Xing-Li
    Wu, Guo-Zhong
    Luo, Kun-Lun
    Fang, Zheng
    Yu, Feng
    Liu, Hong
    Hu, Hong-Juan
    Chen, Liu-Sheng
    Cai, Bing
    Tian, Zhi-Qiang
    ONCOTARGET, 2016, 7 (27) : 41294 - 41305
  • [9] Parthenolide inhibits transforming growth factor β1-induced epithelial-mesenchymal transition in colorectal cancer cells
    Zhu, Shi Mao
    Park, Yong Ran
    Seo, Seung Yong
    Kim, In Hee
    Lee, Soo Teik
    Kim, Sang Wook
    INTESTINAL RESEARCH, 2019, 17 (04) : 527 - 536
  • [10] The potential roles of HIF-1α α in epithelial-mesenchymal transition and ferroptosis in tumor cells
    Shen, Zhongjun
    Yu, Na
    Zhang, Yanfeng
    Jia, Mingbo
    Sun, Ying
    Li, Yao
    Zhao, Liyan
    CELLULAR SIGNALLING, 2024, 122