Shipborne nutrient dynamics and impact on the eutrophication in the Baltic Sea

被引:25
|
作者
Raudsepp, Urmas [1 ]
Maljutenko, Ilja [1 ]
Kouts, Mariliis [1 ]
Granhag, Lena [2 ]
Wilewska-Bien, Magda [2 ]
Hassellov, Ida-Maja [2 ]
Eriksson, K. Martin [2 ]
Johansson, Lasse [3 ]
Jalkanen, Jukka-Pekka [3 ]
Karl, Matthias [4 ]
Matthias, Volker [4 ]
Moldanova, Jana [5 ]
机构
[1] Tallinn Univ Technol, Dept Marine Syst, Akad Rd 15a, EE-12618 Tallinn, Estonia
[2] Chalmers Univ Technol, Dept Mech & Maritime Sci, Horselganden 4, S-41756 Gothenburg, Sweden
[3] Finnish Meteorol Inst, Atmospher Composit Res, Helsinki 00560, Finland
[4] Helmholtz Zentrum Geesthacht, Max Planck Str 1, D-21502 Geesthacht, Germany
[5] Swedish Environm Res Inst, Box 53021, SE-40014 Gothenburg, Sweden
基金
芬兰科学院;
关键词
Nutrients; Modelling; Shipping; Nitrogen cycle; The Baltic Sea; AIR-QUALITY; NITROGEN DEPOSITION; MODELING SYSTEM; NORTH-SEA; CYANOBACTERIA BLOOMS; EXHAUST EMISSIONS; NUMERICAL-MODELS; FRESH-WATER; ECOSYSTEM; VARIABILITY;
D O I
10.1016/j.scitotenv.2019.03.264
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Baltic Sea is a severely eutrophicated sea-area where intense shipping as an additional nutrient source is a potential contributor to changes in the ecosystem. The impact of the two most important shipborne nutrients, nitrogen and phosphorus, on the overall nutrient-phytoplankton-oxygen dynamics in the Baltic Sea was determined by using the coupled physical and biogeochemical model system General Estuarine Transport Model-Ecological Regional Ocean Model (GETM-ERGOM) in a cascade with the Ship Traffic Emission Assessment Model (STEAM) and the Community Multiscale Air Quality (CMAQ) model. We compared two nutrient scenarios in the Baltic Sea: with (SHIP) and without nutrient input from-ships (NOSHIP). The model uses the combined nutrient input from shipping-related waste streams and atmospheric depositions originating from the ship emission and calculates the effect of excess nutrients on the overall biogeochemical cycle, primary production, detritus formation and nutrient flows. The shipping contribution is about 0.3% of the total phosphorus and 1.25-3.3% of the total nitrogen input to the Baltic Sea, but their impact to the different biogeochemical variables is up to 10%. Excess nitrogen entering the N-limited system of the Baltic Sea slightly alters certain pathways: cyanobacteria growth is compromised due to extra nitrogen available for other functional groups while the biomass of diatoms and especially flagellates increases due to the excess of the limiting nutrient. In terms of the Baltic Sea ecosystem functioning, continuous input of ship-borne nitrogen is compensated by steady decrease of nitrogen fixation and increase of denitrification, which results in stationary level of total nitrogen content in the water. Ship-borne phosphorus input results in a decrease of phosphate content in the water and increase of phosphorus binding to sediments. Oxygen content in the water decreases, but reaches stationary state eventually. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页码:189 / 207
页数:19
相关论文
共 50 条
  • [1] NUTRIENT DYNAMICS OF THE BALTIC SEA
    WULFF, F
    STIGEBRANDT, A
    RAHM, L
    [J]. AMBIO, 1990, 19 (03) : 126 - 133
  • [2] A Nutrient Quota Trading Scheme to Reduce the Eutrophication of the Baltic Sea
    Upston-Hooper, Karl
    Mehling, Michael A.
    [J]. JOURNAL FOR EUROPEAN ENVIRONMENTAL & PLANNING LAW, 2007, 4 (04) : 296 - 311
  • [3] Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850
    Meier, H. E. M.
    Eilola, K.
    Almroth-Rosell, E.
    Schimanke, S.
    Kniebusch, M.
    Hoglund, A.
    Pemberton, P.
    Liu, Y.
    Vali, G.
    Saraiva, S.
    [J]. CLIMATE DYNAMICS, 2019, 53 (1-2) : 1145 - 1166
  • [4] Legal Prerequisites for a Nutrient Trading Scheme to Control Eutrophication in the Baltic Sea
    Malla, Katak
    [J]. JOURNAL FOR EUROPEAN ENVIRONMENTAL & PLANNING LAW, 2014, 11 (03) : 272 - 302
  • [5] Correction to: Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850
    H. E. M. Meier
    K. Eilola
    E. Almroth-Rosell
    S. Schimanke
    M. Kniebusch
    A. Höglund
    P. Pemberton
    Y. Liu
    G. Väli
    S. Saraiva
    [J]. Climate Dynamics, 2019, 53 : 1167 - 1169
  • [6] ANNUAL DYNAMICS AND PRODUCTION OF ROTIFERS IN AN EUTROPHICATION GRADIENT IN THE BALTIC SEA
    JOHANSSON, S
    [J]. HYDROBIOLOGIA, 1983, 104 (AUG) : 335 - 340
  • [7] EUTROPHICATION OF THE BALTIC SEA - FOREWORD
    SCHIEWER, U
    [J]. INTERNATIONALE REVUE DER GESAMTEN HYDROBIOLOGIE, 1991, 76 (03): : 293 - 294
  • [8] The role of fish and fisheries in Baltic Sea nutrient dynamics
    Hjerne, O
    Hansson, S
    [J]. LIMNOLOGY AND OCEANOGRAPHY, 2002, 47 (04) : 1023 - 1032
  • [9] Shipborne GNSS acquisition of sea surface heights in the Baltic Sea
    Liibusk, Aive
    Varbla, Sander
    Ellmann, Artu
    Vahter, Kaimo
    Uiboupin, Rivo
    Delpeche-Ellmann, Nicole
    [J]. JOURNAL OF GEODETIC SCIENCE, 2022, 12 (01) : 1 - 21
  • [10] Point sources of nutrient pollution in the lowland river catchment in the context of the Baltic Sea eutrophication
    Kiedrzynska, Edyta
    Kiedrzynski, Marcin
    Urbaniak, Magdalena
    Magnuszewski, Artur
    Sklodowski, Maciej
    Wyrwicka, Anna
    Zalewski, Maciej
    [J]. ECOLOGICAL ENGINEERING, 2014, 70 : 337 - 348