Intensity approximation for pairwise interaction Gibbs point processes using determinantal point processes

被引:3
|
作者
Coeurjolly, Jean-Francois [1 ,2 ]
Lavancier, Frederic [3 ]
机构
[1] Univ Quebec Montreal, Dept Math, Montreal, PQ, Canada
[2] Univ Grenoble Alpes, CNRS, Lab Jean Kuntzmann, St Martin Dheres, France
[3] Univ Nantes, Lab Math Jean Leray, Nantes, France
来源
ELECTRONIC JOURNAL OF STATISTICS | 2018年 / 12卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Determinantal point process; Georgii-Nguyen-Zessin formula; Gibbs point process; Laplace transform;
D O I
10.1214/18-EJS1477
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The intensity of a Gibbs point process is usually an intractable function of the model parameters. For repulsive pairwise interaction point processes, this intensity can be expressed as the Laplace transform of some particular function. Baddeley and Nair (2012) developped the Poisson-saddlepoint approximation which consists, for basic models, in calculating this Laplace transform with respect to a homogeneous Poisson point process. In this paper, we develop an approximation which consists in calculating the same Laplace transform with respect to a specific determinantal point process. This new approximation is efficiently implemented and turns out to be more accurate than the Poisson-saddlepoint approximation, as demonstrated by some numerical examples.
引用
收藏
页码:3181 / 3203
页数:23
相关论文
共 50 条