Privacy-Preserving Data Publishing for Multiple Numerical Sensitive Attributes

被引:26
|
作者
Liu, Qinghai [1 ]
Shen, Hong [1 ,2 ,3 ]
Sang, Yingpeng [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[2] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510275, Guangdong, Peoples R China
[3] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
基金
中国国家自然科学基金;
关键词
privacy-preserving; k-anonymity; numerical sensitive attribute; clustering; Multi-Sensitive Bucketization (MSB);
D O I
10.1109/TST.2015.7128936
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anonymized data publication has received considerable attention from the research community in recent years. For numerical sensitive attributes, most of the existing privacy-preserving data publishing techniques concentrate on microdata with multiple categorical sensitive attributes or only one numerical sensitive attribute. However, many real-world applications can contain multiple numerical sensitive attributes. Directly applying the existing privacy-preserving techniques for single-numerical-sensitive-attribute and multiple-categorical-sensitiveattributes often causes unexpected disclosure of private information. These techniques are particularly prone to the proximity breach, which is a privacy threat specific to numerical sensitive attributes in data publication. In this paper, we propose a privacy-preserving data publishing method, namely MNSACM, which uses the ideas of clustering and Multi-Sensitive Bucketization (MSB) to publish microdata with multiple numerical sensitive attributes. We use an example to show the effectiveness of this method in privacy protection when using multiple numerical sensitive attributes.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 50 条
  • [1] Privacy-Preserving Data Publishing for Multiple Numerical Sensitive Attributes
    Qinghai Liu
    Hong Shen
    Yingpeng Sang
    [J]. Tsinghua Science and Technology, 2015, 20 (03) : 246 - 254
  • [2] Privacy-preserving data publishing methods for multiple numerical sensitive attributes
    Liu, Tengteng
    Ni, Weiwei
    Chong, Zhihong
    Zhang, Yong
    [J]. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2010, 40 (04): : 699 - 703
  • [3] A privacy-preserving method for publishing data with multiple sensitive attributes
    Yi, Tong
    Shi, Minyong
    Shang, Wenqian
    Zhu, Haibin
    [J]. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (01) : 222 - 238
  • [4] A Privacy-preserving Data Publishing Method for Multiple Numerical Sensitive Attributes via Clustering and Multi-Sensitive Bucketization
    Liu, Qinghai
    Shen, Hong
    Sang, Yingpeng
    [J]. 2014 SIXTH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING (PAAP), 2014, : 220 - 223
  • [5] An efficient privacy-preserving data publishing in health care records with multiple sensitive attributes
    Jayapradha, J.
    Prakash, M.
    [J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 623 - 629
  • [6] Multiple Sensitive Attributes Based Privacy Preserving Data Publishing
    Vanasiwala, Jasmina N.
    Nanavati, Nirali R.
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTING METHODOLOGIES AND COMMUNICATION (ICCMC 2018), 2018, : 394 - 400
  • [7] Heap Bucketization Anonymity-An Efficient Privacy-Preserving Data Publishing Model for Multiple Sensitive Attributes
    Jayapradha, J.
    Prakash, M.
    Alotaibi, Youseef
    Khalaf, Osamah Ibrahim
    Alghamdi, Saleh Ahmed
    [J]. IEEE ACCESS, 2022, 10 : 28773 - 28791
  • [8] Privacy Preserving Data Publishing for Multiple Sensitive Attributes Based on Security Level
    Xiao, Yuelei
    Li, Haiqi
    [J]. INFORMATION, 2020, 11 (03)
  • [9] Privacy Preserving Data Publishing with Multiple Sensitive Attributes based on Overlapped Slicing
    Widodo
    Budiardjo, Eko Kuswardono
    Wibowo, Wahyu Catur
    [J]. INFORMATION, 2019, 10 (12)
  • [10] ANGELMS: A Privacy Preserving Data Publishing Framework for Microdata with Multiple Sensitive Attributes
    Luo, Fangwei
    Han, Jianmin
    Lu, Jianfeng
    Peng, Hao
    [J]. 2013 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2013, : 393 - 398