NASICON-Type Lithium-Ion Conductor Materials with High Proton Conductivity Enabled by Lithium Vacancies

被引:4
|
作者
Lu, Yaokai [1 ]
Hu, Enyi [1 ]
Yousaf, Muhammad [1 ]
Ma, Longqing [1 ]
Wang, Jun [1 ]
Wang, Faze [1 ,2 ]
Lund, Peter [3 ]
机构
[1] Southeast Univ, Energy Storage Joint Res Ctr, Sch Energy & Environm, Jiangsu Prov Key Lab Solar Energy Sci & Technol, Nanjing 210096, Peoples R China
[2] Shinshu Univ, Res Initiat Supra Mat, Interdisciplinary Cluster Cutting Edge Res, Nagano, Nagano 3808553, Japan
[3] Aalto Univ, Sch Sci, Dept Engn Phys Adv Energy Syst, Espoo 00076, Finland
基金
中国国家自然科学基金;
关键词
OXIDE FUEL-CELL; COMPOSITE ELECTROLYTE; TRANSPORT; EXCHANGE; LI; HETEROSTRUCTURE; PERFORMANCE; MEMBRANE; DYNAMICS; MOBILITY;
D O I
10.1021/acs.energyfuels.2c03371
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The sodium super ionic conductor (NASICON) has been rapidly developed as an electrolyte for secondary batteries owing to its high ionic conductivity at low temperatures. However, it is very challenging to develop a proton conductor with good conductivity at an intermediate temperature range. Herein, a promising proton conductor can be obtained in NASICON materials, such as Li1+xSrx/2Zr2-x/2(PO4)3 (x = 0.5, 1.0, 1.5, and 2.0). The feasible migration of lithium ions leads to the formation of abundant vacancies for fast proton transfer. The cell based on the Li2.5Sr0.75Zr1.25(PO4)3 electrolyte exhibits an excellent peak power density of 742.85 mW cm-2 at 550 degrees C. Optimizing the electrode-electrolyte interface can further improve the electrochemical performance. We observed Li+ and proton mixed conductivity in NASICON at medium and low temperatures. The protons are in situ intercalated into the lithium vacancies in the NASICON material through the lithium-ion/proton exchange mechanism and are transported by interconnecting interstitial lithium vacancies.
引用
收藏
页码:15154 / 15164
页数:11
相关论文
共 50 条
  • [1] Effect of microstructure on the conductivity of a NASICON-type lithium ion conductor
    Johnson, Paul
    Sammes, Nigel
    Imanishi, Nobuyuki
    Takeda, Yasuo
    Yamamoto, Osamu
    [J]. SOLID STATE IONICS, 2011, 192 (01) : 326 - 329
  • [2] NaSICON-type materials for lithium-ion battery applications: Progress and challenges
    Xiao, Jingwen
    Zhang, Bao
    Liu, Junxiang
    He, Xinyou
    Xiao, Zhiming
    Qin, Haozhe
    Liu, Tongchao
    Amine, Khalil
    Ou, Xing
    [J]. NANO ENERGY, 2024, 127
  • [3] Understanding Lithium-Ion Conductivity in NASICON-Type Polymer-in-Ceramic Composite Electrolytes
    Nkosi, Funeka P.
    Cuevas, Ignacio
    Valvo, Mario
    Mindemark, Jonas
    Mahun, Andrii
    Abbrent, Sabina
    Brus, Jiri
    Kobera, Libor
    Edstrom, Kristina
    [J]. ACS APPLIED ENERGY MATERIALS, 2024, 7 (10): : 4609 - 4619
  • [4] Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping
    Ortiz, Gregorio F.
    Lopez, Maria C.
    Lavela, Pedro
    Vidal-Abarca, Candela
    Tirado, Jose L.
    [J]. SOLID STATE IONICS, 2014, 262 : 573 - 577
  • [5] Effect of lithium isotopes on the phase transition in NASICON-type lithium-ion conductor LiZr2(PO4)3
    Inaguma, Yoshiyuki
    Funayama, Koki
    Aimi, Akihisa
    Mori, Daisuke
    Hamasaki, Yosuke
    Ueda, Koichiro
    Ikeda, Minoru
    Ohno, Takahisa
    Mitsuishi, Kazutaka
    [J]. SOLID STATE IONICS, 2018, 321 : 29 - 33
  • [6] Crystal Structure and Ionic Conductivity of the NASICON-Type Lithium Ion Conducting Solid Electrolyte
    He Kun
    Wang Yan-Hang
    Zu Cheng-Kui
    Liu Yong-Hua
    Ma Juan-Rong
    [J]. CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2012, 28 (09) : 1935 - 1939
  • [7] Increased ionic conductivity of a NASICON lithium ion conductor under the influence of mesoporous materials
    Lu, Xiaojuan
    Wu, Yanan
    Yang, Dongyu
    Wang, Rui
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 794 : 585 - 593
  • [8] Lithium-stable NASICON-type lithium-ion conducting solid electrolyte film coated with a polymer electrolyte
    Koizumi, Yuta
    Mori, Daisuke
    Taminato, Sou
    Yamamoto, Osamu
    Takeda, Yasuo
    Imanishi, Nobuyuki
    [J]. SOLID STATE IONICS, 2019, 337 : 101 - 106
  • [9] NASICON-type lithium iron germanium phosphate glass ceramic nanocomposites as anode materials for lithium ion batteries
    Moustafa, M. G.
    Sanad, M. M. S.
    Hassaan, M. Y.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 845
  • [10] NASICON-type lithium iron germanium phosphate glass ceramic nanocomposites as anode materials for lithium ion batteries
    Moustafa, M.G.
    Sanad, M.M.S.
    Hassaan, M.Y.
    [J]. Journal of Alloys and Compounds, 2020, 845