FIX-AND-OPTIMIZE METAHEURISTICS FOR MINMAX REGRET BINARYINTEGER PROGRAMMING PROBLEMS UNDER INTERVAL UNCERTAINTY

被引:0
|
作者
Carvalho, Iago A. A. [1 ]
Noronha, Thiago F. F. [2 ]
Duhamel, Christophe [3 ]
机构
[1] Univ Fed Alfenas, Comp Sci Dept, Av Jovino Fernandes Sales 2600, BR-37133840 Alfenas, MG, Brazil
[2] Univ Fed Minas Gerais, Comp Sci Dept, Av Pres Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
[3] Univ Le Havre Normandie, Lab Informat Traitement Informat & Syst, 25 Rue Philippe, F-76600 Le Havre, France
关键词
Minmax regret; interval uncertainty; binary integer programming; fix-and-optimize; metaheuristics; COMPLEXITY; MAX; HEURISTICS; ALGORITHMS; VERSIONS;
D O I
10.1051/ro/2022198
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Binary Integer Programming problem (BIP) is a mathematical optimization problem, with linear objective function and constraints, on which the domain of all variables is {0, 1}. In BIP, every variable is associated with a determined cost coefficient. The Minmax regret Binary Integer Programming problem under interval uncertainty (M-BIP) is a generalization of BIP in which the cost coefficient associated to the variables is not known in advance, but are assumed to be bounded by an interval. The objective of M-BIP is to find a solution that possesses the minimum maximum regret among all possible solutions for the problem. In this paper, we show that the decision version of M-BIP is sigma(p)(2)-complete. Furthermore, we tackle M-BIP by both exact and heuristic algorithms. We extend three exact algorithms from the literature to M-BIP and propose two fix-and-optimize heuristic algorithms. Computational experiments, performed on the Minmax regret Weighted Set Covering problem under Interval Uncertainties (M-WSCP) as a test case, indicates that one of the exact algorithms outperforms the others. Furthermore, it shows that the proposed fix-and-optimize heuristics, that can be easily employed to solve any minmax regret optimization problem under interval uncertainty, are competitive with ad-hoc algorithms for the M-WSCP.
引用
收藏
页码:4281 / 4301
页数:21
相关论文
共 50 条
  • [1] A fix-and-optimize heuristic for the minmax regret shortest path arborescence problem under interval uncertainty
    Carvalho, Iago A.
    Noronha, Thiago F.
    Duhamel, Christophe
    Vieira, Luiz F. M.
    dos Santos, Vinicius F.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2023, 30 (02) : 1120 - 1143
  • [2] Combinatorial two-stage minmax regret problems under interval uncertainty
    Marc Goerigk
    Adam Kasperski
    Paweł Zieliński
    Annals of Operations Research, 2021, 300 : 23 - 50
  • [3] Combinatorial two-stage minmax regret problems under interval uncertainty
    Goerigkl, Marc
    Kasperski, Adam
    Zielinski, Pawel
    ANNALS OF OPERATIONS RESEARCH, 2021, 300 (01) : 23 - 50
  • [4] Minmax regret bottleneck problems with solution-induced interval uncertainty structure
    Averbakh, Igor
    DISCRETE OPTIMIZATION, 2010, 7 (03) : 181 - 190
  • [5] Interval data minmax regret network optimization problems
    Averbakh, I
    Lebedev, V
    DISCRETE APPLIED MATHEMATICS, 2004, 138 (03) : 289 - 301
  • [6] On a Class of Interval Data Minmax Regret CO Problems
    Candia-Vejar, Alfredo
    Alvarez-Miranda, Eduardo
    OPERATIONS RESEARCH PROCEEDINGS 2007, 2008, : 123 - 128
  • [7] Minmax regret solutions for minimax optimization problems with uncertainty
    Averbakh, I
    OPERATIONS RESEARCH LETTERS, 2000, 27 (02) : 57 - 65
  • [8] Randomized Minmax Regret for Combinatorial Optimization Under Uncertainty
    Mastin, Andrew
    Jaillet, Patrick
    Chin, Sang
    ALGORITHMS AND COMPUTATION, ISAAC 2015, 2015, 9472 : 491 - 501
  • [9] Minmax regret median location on a network under uncertainty
    Averbakh, I
    Berman, O
    INFORMS JOURNAL ON COMPUTING, 2000, 12 (02) : 104 - 110
  • [10] Some tractable instances of interval data minmax regret problems
    Escoffier, Bruno
    Monnot, Jerome
    Spanjaard, Olivier
    OPERATIONS RESEARCH LETTERS, 2008, 36 (04) : 424 - 429