Stochasticity: A Feature for the Structuring of Large and Heterogeneous Image Databases

被引:5
|
作者
Atto, Abdourrahmane M. [1 ]
Berthoumieu, Yannick [2 ]
Megret, Remi [2 ]
机构
[1] Univ Savoie, LISTIC Lab Informat Syst Informat & Knowledge Pro, F-74944 Annecy Le Vieux, France
[2] Univ Bordeaux, IMS Lab Mat Syst Integrat, CNRS UMR 5218, IPB,ENSEIRB MATMECA, F-33400 Talence, France
来源
ENTROPY | 2013年 / 15卷 / 11期
关键词
texture descriptors; stochasticity measurements; semantic gap; parametric modeling; TEXTURE CLASSIFICATION; VISUAL-PERCEPTION; WAVELET; REGULARITY; RETRIEVAL; SEGMENTATION; RANDOMNESS; FREQUENCY; SEMANTICS;
D O I
10.3390/e15114782
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper addresses image feature characterization and the structuring of large and heterogeneous image databases through the stochasticity or randomness appearance. Measuring stochasticity involves finding suitable representations that can significantly reduce statistical dependencies of any order. Wavelet packet representations provide such a framework for a large class of stochastic processes through an appropriate dictionary of parametric models. From this dictionary and the Kolmogorov stochasticity index, the paper proposes semantic stochasticity templates upon wavelet packet sub-bands in order to provide high level classification and content-based image retrieval. The approach is shown to be relevant for texture images.
引用
收藏
页码:4782 / 4801
页数:20
相关论文
共 50 条
  • [1] STRUCTURING OF LARGE AND HETEROGENEOUS TEXTURE DATABASES
    Atto, Abdourrahmane M.
    Berthoumieu, Yannick
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 589 - 592
  • [2] Sorted Dominant Local Color for Searching Large and Heterogeneous Image Databases
    Vidal, Marcio Luiz A.
    Cavalcanti, Joao M. B.
    de Moura, Edleno Silva
    da Silva, Altigran Soares
    Torres, Ricardo da Silva
    2012 21ST INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR 2012), 2012, : 1960 - 1963
  • [3] Improving query effectiveness for large image databases with multiple visual feature combination
    Shen, JL
    Shepherd, J
    Ngu, AHH
    Huynh, DQ
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2004, 2973 : 857 - 868
  • [4] A fast multiresolution feature matching algorithm for exhaustive search in large image databases
    Song, BC
    Kim, MJ
    Ra, JB
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2001, 11 (05) : 673 - 678
  • [5] Evolutionary feature synthesis for image databases
    Dong, AL
    Bhanu, B
    Lin, YQ
    WACV 2005: SEVENTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, 2005, : 330 - 335
  • [6] Data modeling and feature extraction for image databases
    Shaft, U
    Ramakrishnan, R
    MULTIMEDIA STORAGE AND ARCHIVING SYSTEMS, 1996, 2916 : 90 - 102
  • [7] Scalable feature selection for large sized databases
    Liu, H
    Setiono, R
    4TH WORLD CONGRESS OF EXPERT SYSTEMS, VOL 1 AND 2: APPLICATION OF ADVANCED INFORMATION TECHNOLOGIES, 1998, : 521 - 528
  • [8] Visual Browsing of Large Image Databases
    Schaefer, Gerald
    ADVANCED MACHINE LEARNING TECHNOLOGIES AND APPLICATIONS, AMLTA 2014, 2014, 488 : 531 - 539
  • [9] Interactive Browsing of Large Image Databases
    Schaefer, Gerald
    2016 SIXTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION PROCESSING AND COMMUNICATIONS (ICDIPC), 2016, : 168 - 170
  • [10] Visualizing and browsing large image databases
    Frigui, H
    IKE '04: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE ENGNINEERING, 2004, : 68 - 74