Phase Space for the Breakdown of the Quantum Hall Effect in Epitaxial Graphene

被引:39
|
作者
Alexander-Webber, J. A. [1 ]
Baker, A. M. R. [1 ]
Janssen, T. J. B. M. [2 ]
Tzalenchuk, A. [2 ,3 ]
Lara-Avila, S. [4 ]
Kubatkin, S. [4 ]
Yakimova, R. [5 ]
Piot, B. A. [6 ]
Maude, D. K. [6 ]
Nicholas, R. J. [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England
[2] Natl Phys Lab, Teddington TW11 0LW, Middx, England
[3] Univ London, Dept Phys, Egham TW20 0EX, Surrey, England
[4] Chalmers, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[5] Linkoping Univ, Dept Phys Chem & Biol IFM, S-58183 Linkoping, Sweden
[6] LNCMI CNRS UJF INSA UPS, F-38042 Grenoble 9, France
基金
英国工程与自然科学研究理事会;
关键词
CYCLOTRON PHONON EMISSION; ENERGY LOSS RATES; RESISTANCE STANDARD; HETEROJUNCTIONS;
D O I
10.1103/PhysRevLett.111.096601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report the phase space defined by the quantum Hall effect breakdown in polymer gated epitaxial graphene on SiC (SiC/G) as a function of temperature, current, carrier density, and magnetic fields up to 30 T. At 2 K, breakdown currents (I-c) almost 2 orders of magnitude greater than in GaAs devices are observed. The phase boundary of the dissipationless state (rho(xx) = 0) shows a [1 - (T/T-c)(2)] dependence and persists up to T-c > 45 K at 29 T. With magnetic field Ic was found to increase alpha B-3/2 and T-c alpha B-2. As the Fermi energy approaches the Dirac point, the nu = 2 quantized Hall plateau appears continuously from fields as low as 1 T up to at least 19 T due to a strong magnetic field dependence of the carrier density.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Quantum oscillations and quantum Hall effect in epitaxial graphene
    Jobst, Johannes
    Waldmann, Daniel
    Speck, Florian
    Hirner, Roland
    Maude, Duncan K.
    Seyller, Thomas
    Weber, Heiko B.
    PHYSICAL REVIEW B, 2010, 81 (19)
  • [2] AC quantum Hall effect in epitaxial graphene
    Luond, F.
    Overney, F.
    Jeanneret, B.
    Mueller, A.
    Kruskopf, M.
    Pierz, K.
    2016 CONFERENCE ON PRECISION ELECTROMAGNETIC MEASUREMENTS (CPEM 2016), 2016,
  • [3] AC Quantum Hall Effect in Epitaxial Graphene
    Luond, Felix
    Kalmbach, Cay-Christian
    Overney, Frederic
    Schurr, Jurgen
    Jeanneret, Blaise
    Muller, Andre
    Kruskopf, Mattias
    Pierz, Klaus
    Ahlers, Franz
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (06) : 1459 - 1466
  • [4] Quantum Hall effect in epitaxial graphene with permanent magnets
    F. D. Parmentier
    T. Cazimajou
    Y. Sekine
    H. Hibino
    H. Irie
    D. C. Glattli
    N. Kumada
    P. Roulleau
    Scientific Reports, 6
  • [5] Quantum Hall effect in epitaxial graphene with permanent magnets
    Parmentier, F. D.
    Cazimajou, T.
    Sekine, Y.
    Hibino, H.
    Irie, H.
    Glattli, D. C.
    Kumada, N.
    Roulleau, P.
    SCIENTIFIC REPORTS, 2016, 6
  • [6] Phase diagram for the breakdown of the quantum Hall effect
    Rigal, LB
    Maude, DK
    Potemski, M
    Portal, JC
    Eaves, L
    Wasilewski, ZR
    Hill, G
    Pate, MA
    PHYSICAL REVIEW LETTERS, 1999, 82 (06) : 1249 - 1252
  • [7] Local breakdown of the quantum Hall effect in narrow single layer graphene Hall devices
    Yanik, C.
    Kaya, I. I.
    SOLID STATE COMMUNICATIONS, 2013, 160 : 47 - 51
  • [8] Bilayer-induced asymmetric quantum Hall effect in epitaxial graphene
    Iagallo, Andrea
    Tanabe, Shinichi
    Roddaro, Stefano
    Takamura, Makoto
    Sekine, Yoshiaki
    Hibino, Hiroki
    Miseikis, Vaidotas
    Coletti, Camilla
    Piazza, Vincenzo
    Beltram, Fabio
    Heun, Stefan
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (05) : 1 - 6
  • [9] Breakdown of the quantum Hall effect
    Maude, DK
    Rigal, LB
    Desrat, W
    Potemski, M
    Portal, JC
    Eaves, L
    Wasilewski, ZR
    Toropov, AI
    Hill, G
    ACTA PHYSICA POLONICA A, 2001, 100 (02) : 213 - 226
  • [10] Breakdown of the quantum Hall effect
    Max-Planck-Inst. Festkorperforschung, Heisenbergstr. 1, D-70569, Stuttgart, Germany
    Phys E, 2 (79-101):