Highly efficient adsorption of Cr(VI) from aqueous solution by Fe3+ impregnated biochar

被引:18
|
作者
Wang, Hong [1 ,2 ,3 ,4 ]
Tian, Zhuangzhuang [5 ]
Jiang, Ling [1 ]
Luo, Wenwen [1 ]
Wei, Zhenggui [1 ]
Li, Shiyin [1 ]
Cui, Jing [1 ]
Wei, Wei [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Normal Univ, Sch Environm, Jiangsu Prov Key Lab Mat Cycling & Pollut Control, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Minist Educ, Key Lab Virtual Geog Environm, Nanjing, Jiangsu, Peoples R China
[3] State Key Lab Cultivat Base Geog Environm Evolut, Nanjing, Jiangsu, Peoples R China
[4] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing, Jiangsu, Peoples R China
[5] Sias Int Univ, Sch Elect & Informat Engn, Xinzheng, Peoples R China
基金
中国国家自然科学基金;
关键词
Adsorption; biochar; Cr(VI); Fe3+ impregnation; isotherm; HEXAVALENT CHROMIUM REMOVAL; ACTIVATED CARBON; WASTE-WATER; HUMIC-ACID; MAGNETIC BIOCHAR; FAST PYROLYSIS; POTENTIAL USE; LOW-COST; SORPTION; ADSORBENT;
D O I
10.1080/01932691.2016.1203333
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biochar (BC) has been widely used as a low-cost adsorbent for the removal of contaminants from water and soil. However, the adsorption ability of BC towards heavy metal oxyanions (e.g., Cr(VI)) is relatively low due to the negatively charged surface of BC. In this study, pristine BC was impregnated with Fe3+ to improve its Cr(VI) adsorption capability. Fe3+-impregnated BC (Fe3+-BC) was successfully synthesized by a simple impregnation method and used for the removal of Cr(VI) from aqueous solution. Various factors affecting the adsorption, such as impregnation ratio, pH, adsorbent dosage, contact time, temperature, and the presence of humic acid, were investigated in detail. Results showed that Fe3+-BC had strong adsorption ability to Cr(VI) with a maximum adsorption capacity of 197.80mg/g, which were not only significantly higher than that of the pristine BC, but also were superior to many previously reported adsorbents. It was favorable for Cr(VI) adsorption under the condition of acidic and high temperature. The adsorption data obeyed Sips and Langmuir isotherms and the kinetic data were well described by the pseudo-first-order kinetic model. The results herein revealed that the Fe3+-impregnated BC had a good potential as a highly efficient material for adsorption of Cr(VI) from aqueous solution. [GRAPHICS] .
引用
收藏
页码:815 / 825
页数:11
相关论文
共 50 条
  • [1] Highly Efficient Adsorption of Cr(VI) by Sakura Leaves from Aqueous Solution
    Qi, Wenfang
    Wang, Yue
    Ji, Min
    Zhao, Yingxin
    Zhang, Zhenya
    CHEMISTRY LETTERS, 2015, 44 (05) : 697 - 699
  • [2] Enhanced adsorption of sulfamethoxazole from aqueous solution by Fe-impregnated graphited biochar
    Zhang, Runyuan
    Zheng, Xiaoxian
    Chen, Bohan
    Ma, Jinlin
    Niu, Xiaojun
    Zhang, Dongqing
    Lin, Zhang
    Fu, Mingli
    Zhou, Shaoqi
    JOURNAL OF CLEANER PRODUCTION, 2020, 256
  • [3] Mesopore-rich badam-shell biochar for efficient adsorption of Cr(VI) from aqueous solution
    Jia, Xiuxiu
    Zhang, Yunqiu
    He, Zhuang
    Chang, Fengqin
    Zhang, Hucai
    Wagberg, Thomas
    Hu, Guangzhi
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (04):
  • [4] Efficient Removal of Cr(VI) from Aqueous Solution by Fe-Mn Oxide-Modified Biochar
    Yiyang Zhu
    Wencan Dai
    Kai Deng
    Ting Pan
    Zhijie Guan
    Water, Air, & Soil Pollution, 2020, 231
  • [5] Efficient Removal of Cr(VI) from Aqueous Solution by Fe-Mn Oxide-Modified Biochar
    Zhu, Yiyang
    Dai, Wencan
    Deng, Kai
    Pan, Ting
    Guan, Zhijie
    WATER AIR AND SOIL POLLUTION, 2020, 231 (02):
  • [6] Biochar-supported Fe/Ni bimetallic nanoparticles for the efficient removal of Cr(VI) from aqueous solution
    Xing, Xiaowei
    Ren, Xuemei
    Alharbi, Njud S.
    Chen, Changlun
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 359
  • [7] Preparation of Modified Biochar and Its Adsorption of Cr(VI) in Aqueous Solution
    Zuo, Jinlong
    Li, Wenjing
    Xia, Zhi
    Zhao, Tingting
    Tan, Chong
    Wang, Yuyang
    Li, Junsheng
    Luca Vattuone, Luca
    COATINGS, 2023, 13 (11)
  • [8] Europium Activated Aluminum Organic Frameworks for Highly Selective and Sensitive Detection of Fe3+ and Cr(VI) in Aqueous Solution
    Zhang Zhen
    Fang Qi-Hui
    Zhuang Zan-Yong
    Han Yang
    Li Ling-Yun
    Yu Yan
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2020, 39 (11) : 1958 - 1964
  • [9] Removal of Cr(VI) from aqueous solution by a highly efficient chelating resin
    Paola Santander
    Daniela Morales
    Bernabé L. Rivas
    Nalan Kabay
    Idil Yilmaz
    Özge Kuşku
    Mithat Yuksel
    Marek Bryjak
    Polymer Bulletin, 2017, 74 : 2033 - 2044
  • [10] Removal of Cr(VI) from aqueous solution by a highly efficient chelating resin
    Santander, Paola
    Morales, Daniela
    Rivas, Bernabe L.
    Kabay, Nalan
    Yilmaz, Idil
    Kusku, Ozge
    Yuksel, Mithat
    Bryjak, Marek
    POLYMER BULLETIN, 2017, 74 (06) : 2033 - 2044