Smooth convergence of random center manifolds for SPDEs in varying phase spaces

被引:7
|
作者
Shi, Lin [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic partial differential equation; Random dynamical systems; Random center manifold; Singularly perturbed phase spaces; Smooth convergence; NAVIER-STOKES EQUATIONS; INVARIANT-MANIFOLDS; DIFFUSION EQUATIONS; DOMAIN; PERTURBATION; DYNAMICS; BEHAVIOR; THEOREM;
D O I
10.1016/j.jde.2020.01.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the limiting behavior of center manifolds for a class of singularly perturbed stochastic partial differential equations in terms of the phase spaces. We first prove the existence and smoothness of random center manifolds for these equations. Then, we establish the smooth convergence of these random center manifolds as the phase spaces approach to their singular limit. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:1963 / 2011
页数:49
相关论文
共 50 条
  • [1] LIMITING BEHAVIOR OF UNSTABLE MANIFOLDS FOR SPDES IN VARYING PHASE SPACES
    Shi, Lin
    Li, Dingshi
    Lu, Kening
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (12): : 6311 - 6337
  • [2] Convergence of Sobolev spaces on varying manifolds
    Guy Bouchitté
    Giuseppe Buttazzo
    Ilaria Fragalà
    [J]. The Journal of Geometric Analysis, 2001, 11 (3): : 399 - 422
  • [3] SMOOTH CENTER MANIFOLDS FOR RANDOM DYNAMICAL SYSTEMS
    Guo, Peng
    Shen, Jun
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (06) : 1925 - 1962
  • [4] Limiting behavior of center manifolds for stochastic evolutionary equations with delay in varying phase spaces
    Yang, Juan
    Gong, Jiaxin
    Wu, Longyu
    Shu, Ji
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (01)
  • [5] SINGULAR LIMIT OF MEAN-SQUARE INVARIANT UNSTABLE MANIFOLDS FOR SPDES DRIVEN BY NONLINEAR MULTIPLICATIVE WHITE NOISE IN VARYING PHASE SPACES
    Shi, Lin
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (10) : 4407 - 4419
  • [6] Center manifolds for smooth invariant manifolds
    Chow, SN
    Liu, W
    Yi, YF
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (11) : 5179 - 5211
  • [7] Existence of smooth stable manifolds for a class of parabolic SPDEs with fractional noise
    Lin, Xiaofang
    Neamtu, Alexandra
    Zeng, Caibin
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (02)
  • [8] Random Projections of Smooth Manifolds
    Richard G. Baraniuk
    Michael B. Wakin
    [J]. Foundations of Computational Mathematics, 2009, 9 : 51 - 77
  • [9] Random Projections of Smooth Manifolds
    Baraniuk, Richard G.
    Wakin, Michael B.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (01) : 51 - 77
  • [10] SMOOTH CONJUGACY OF CENTER MANIFOLDS
    BURCHARD, A
    DENG, B
    LU, KN
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1992, 120 : 61 - 77