Automated Pulmonary Function Measurements from Preoperative CT Scans with Deep Learning

被引:2
|
作者
Choi, Young Sang [1 ]
Oh, Jieun [1 ]
Ahn, Seonhui [1 ]
Hwangbo, Yul [1 ]
Choi, Jin-Ho [1 ,2 ]
机构
[1] Natl Canc Ctr, Healthcare AI Team, Goyang Si 10408, Gyeonggi Do, South Korea
[2] Natl Canc Ctr, Ctr Lung Canc, Goyang Si 10408, Gyeonggi Do, South Korea
关键词
pulmonary function; computed tomography; lung cancer; regression; deep learning; LUNG-CANCER; SURGERY; CLASSIFICATION; LSTM;
D O I
10.1109/BHI56158.2022.9926796
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Lung resections are the most effective treatment option for early stage lung cancer. Clinicians determine whether a patient is operable and the extent a lung can be resected based in part on the patient's pulmonary function parameters. In this study, we investigate the feasibility of generating forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) values from preoperative chest computed tomography (CT) scans. Our study population includes 546 individuals who had lung cancer surgery at an oncology specialty clinic between 2009 and 2015. All CT studies and pulmonary function tests (PFTs) were collected within 90 days before a subject's operation. We measure pulmonary function with convolutional neural network and recurrent neural network models, extracting image embeddings from axial CT slices with a ResNet-50 network and generating FEV1 and FVC measurements using a bidirectional long short-term memory regressor. We show that combining feature vectors extracted from mediastinal and lung Hounsfield unit windows and taking a multi-label regression approach improves performance over training with embeddings from only one window or single-task networks trained to measure only FEV1 or FVC values. Our work generates PFT measurements end-to-end and is trained with only computed tomography scans and pulmonary function labels with no manual slice selection, bounding boxes, or segmentation masks.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Automated Analysis of Split Kidney Function from CT Scans Using Deep Learning and Delta Radiomics
    Correa-Medero, Ramon Luis
    Jeong, Jiwoong
    Patel, Bhavik
    Banerjee, Imon
    Abdul-Muhsin, Haidar
    JOURNAL OF ENDOUROLOGY, 2024, 38 (08) : 817 - 823
  • [2] Automated measurement of lumbar pedicle screw parameters using deep learning algorithm on preoperative CT scans
    Zhang, Qian
    Zhao, Fanfan
    Zhang, Yu
    Huang, Man
    Gong, Xiangyang
    Deng, Xuefei
    JOURNAL OF BONE ONCOLOGY, 2024, 47
  • [3] Automated Detection of Spinal Lesions From CT Scans via Deep Transfer Learning
    Camisa, Andrea
    Montanari, Giovanni
    Testa, Andrea
    Falzetti, Luigi
    Avnet, Sofia
    Baldini, Nicola
    Notarstefano, Giuseppe
    IEEE ACCESS, 2024, 12 : 65310 - 65322
  • [4] Automated Assessment of Vertebral Fractures from Chest CT Scans Using Deep Learning
    Nadeem, S.
    Comellas, A. P.
    Guha, I.
    Hoffman, E. A.
    Regan, E. A.
    Saha, P. K.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [5] Deep learning predicts malignancy and metastasis of solid pulmonary nodules from CT scans
    Mu, Junhao
    Kuang, Kaiming
    Ao, Min
    Li, Weiyi
    Dai, Haiyun
    Ouyang, Zubin
    Li, Jingyu
    Huang, Jing
    Guo, Shuliang
    Yang, Jiancheng
    Yang, Li
    FRONTIERS IN MEDICINE, 2023, 10
  • [6] Automated detection of pulmonary nodules in CT scans
    Antonelli, M.
    Frosini, G.
    Lazzerini, B.
    Marcelloni, F.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, : 799 - +
  • [7] AUTOMATED MEASUREMENTS OF CT-SCANS IN THE ELDERLY
    LENKIEWICZ, JE
    JOURNAL OF ANATOMY, 1981, 133 (DEC) : 665 - 665
  • [8] Automated Segmentation of Lymph Nodes on Neck CT Scans Using Deep Learning
    Al Hasan, Md Mahfuz
    Ghazimoghadam, Saba
    Tunlayadechanont, Padcha
    Mostafiz, Mohammed Tahsin
    Gupta, Manas
    Roy, Antika
    Peters, Keith
    Hochhegger, Bruno
    Mancuso, Anthony
    Asadizanjani, Navid
    Forghani, Reza
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (06): : 2955 - 2966
  • [9] WEAKLY SUPERVISED DEEP LEARNING ON CT SCANS PREDICTS SURVIVAL FROM CHRONIC PULMONARY ASPERGILLOSIS
    Zusag, M.
    Angheleanu, R.
    Norhan, H.
    Nwankwo, L.
    Periselneris, J.
    Armstrong-James, D.
    Loebinger, M. R.
    Desai, S. R.
    Semple, T.
    Angelini, E.
    Shah, A.
    THORAX, 2018, 73 : A110 - A111
  • [10] AUTOMATED MEASUREMENTS OF BODY COMPOSITION IN ABDOMINAL CT SCANS USING DEEP LEARNING CAN PREDICT SURVIVAL IN PATIENTS WITH CIRRHOSIS
    Zou, Winnie
    Enchakalody, Binu
    Shah, Nidhi
    Zhang, Peng
    Su, Grace L.
    HEPATOLOGY, 2020, 72 : 790A - 790A