Effect of temperature on the hybrid supercapacitor based on NiO and activated carbon with alkaline polymer gel electrolyte

被引:138
|
作者
Yuan, Changzhou
Zhang, Xiaogang [1 ]
Wu, Quanfu
Gao, Bo
机构
[1] Xinjiang Univ, Inst Appl Chem, Urumqi 830046, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Col Mat Sci & Engn, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
PVA-KOH-H2O; polymer gel; hybrid supercapacitor; temperature;
D O I
10.1016/j.ssi.2006.04.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A hybrid supercapacitor was fabricated with NiO and activated carbon as positive and negative electrode, PVA-KOH-H2O containing 5 M KOH as alkaline polymer gel electrolyte, respectively Cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic chargedischarge measurements were applied to investigate the dependence of the hybrid supercapacitor on the temperatures from -20 to 40 degrees C. The results demonstrated that the capacitive performance of the hybrid supercapacitor turned even better with the temperatures rising up from -20 to 40 degrees C. The increase of temperature improved the conductivity of the alkaline polymer gel electrolyte, decreased the charge-transfer resistance and made the better contact at the interface between the electroactive materials and the alkaline gel electrolyte at higher operating temperature. The maximum of the specific capacitance and energy density of the hybrid supercapacitor were 73.4 F/g and 26.1 Wh/kg at the current density of 0.1 A/g and the operating temperature of 40 degrees C, respectively. (c) 2006 Elsevier B.V All rights reserved.
引用
收藏
页码:1237 / 1242
页数:6
相关论文
共 50 条
  • [1] Supercapacitor based on activated carbon and hybrid solid polymer electrolyte
    Hashim, M. A.
    Khiar, A. S. A.
    MATERIALS RESEARCH INNOVATIONS, 2011, 15 : 63 - 66
  • [2] Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte
    Sivaraman, P.
    Thakur, A.
    Kushwaha, R. K.
    Ratna, D.
    Samui, A. B.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (09) : A435 - A438
  • [3] Effect of activated carbon and electrolyte on properties of supercapacitor
    Shao-yun, Zhou
    Xin-hai, Li
    Zhi-xing, Wang
    Hua-jun, Guo
    Wen-Jie, Peng
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2007, 17 (06) : 1328 - 1333
  • [4] Effect of activated carbon and electrolyte on properties of supercapacitor
    周邵云
    李新海
    王志兴
    郭华军
    彭文杰
    TransactionsofNonferrousMetalsSocietyofChina, 2007, (06) : 1328 - 1333
  • [5] Effect of the Electrolyte Alkaline Ions on the Electrochemical Performance of α-Ni(OH)2/Activated Carbon Composites in the Hybrid Supercapacitor Cell
    Soserov, L.
    Boyadzhieva, T.
    Koleva, V.
    Girginov, Ch.
    Stoyanova, A.
    Stoyanova, R.
    CHEMISTRYSELECT, 2017, 2 (23): : 6693 - 6698
  • [6] Investigation of polymer electrolyte hybrid supercapacitor based on manganese oxide-carbon electrodes
    Staiti, P.
    Lufrano, F.
    ELECTROCHIMICA ACTA, 2010, 55 (25) : 7436 - 7442
  • [7] Flexible and low temperature resistant double network alkaline gel polymer electrolyte with dual-role KOH for supercapacitor
    Hu, Xiaoyi
    Fan, Lidan
    Qin, Gang
    Shen, Zhongshuo
    Chen, Juan
    Wang, Mengxiao
    Yang, Jia
    Chen, Qiang
    JOURNAL OF POWER SOURCES, 2019, 414 : 201 - 209
  • [8] A new class of alkaline polymer gel electrolyte for carbon aerogel supercapacitors
    Kalpana, D.
    Renganathan, N. G.
    Pitchumani, S.
    JOURNAL OF POWER SOURCES, 2006, 157 (01) : 621 - 623
  • [9] A structural supercapacitor based on activated carbon fabric and a solid electrolyte
    Reece, Richard
    Lekakou, C.
    Smith, P. A.
    MATERIALS SCIENCE AND TECHNOLOGY, 2019, 35 (03) : 368 - 375
  • [10] Floating of PPY Derived Carbon Based Symmetric Supercapacitor in Alkaline Electrolyte
    Bello, A.
    Barzegar, F.
    Madito, M. J.
    Momodu, D. Y.
    Khaleed, A. A.
    Olaniyan, O.
    Masikhwa, T. M.
    Dangbegnon, J. K.
    Manyala, N.
    ELECTROCHEMICAL CAPACITORS AND RELATED DEVICES: FUNDAMENTALS TO APPLICATIONS, 2017, 75 (24): : 1 - 12