Pore and surface diffusion in multicomponent adsorption and liquid chromatography systems

被引:111
|
作者
Ma, Z [1 ]
Whitley, RD [1 ]
Wang, NHL [1 ]
机构
[1] PURDUE UNIV,SCH CHEM ENGN,W LAFAYETTE,IN 47907
关键词
D O I
10.1002/aic.690420507
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A generalized parallel pore and surface diffusion model for multicomponent adsorption and liquid chromatography is formulated and solved numerically. Analytical solution for first- and second-order central moments for a pulse on a plateau input is used as benchmarks for the numerical solutions. Theoretical predictions are compared with experimental data for two systems: ion-exchange of strontium, sodium, and calcium in a zeolite and competitive adsorption of two organics on activated carbon. In a linear isotherm region of single-component systems, both surface and pore diffusion cause symmetric spreading in breakthrough curves. In a highly nonlinear isotherm region, however, surface diffusion causes pronounced tailing in breakthrough curves; the larger the step change in concentration, the more pronounced tailing, in contrast to relatively symmetric breakthroughs due to pore diffusion. If only a single diffusion mechanism is assumed in analyzing the data of parallel diffusion systems, a concentration-dependent apparent surface diffusivity or pore diffusivity results; for a convex isotherm, the apparent surface diffusivity increases, whereas the apparent pore diffusivity decreases with increasing concentration. For a multicomponent nonlinear system, elution order can change if pore diffusion dominates for a low-affinity solute, whereas surface diffusion dominates for a high-affinity solute.
引用
收藏
页码:1244 / 1262
页数:19
相关论文
共 50 条