A Multicore Architecture for High-Performance Scientific Computing using FPGAs

被引:1
|
作者
Cobos Carrascosa, J. P. [1 ]
Aparicio del Moral, B. [1 ]
Ramos, J. L. [1 ]
Lopez Jimenez, A. C. [1 ]
del Toro Iniesta, J. C. [1 ]
机构
[1] CSIC, Inst Astrofis Andalucia, Granada, Spain
关键词
MIMD; multi-core; FPGA; high-performance; software pipelining;
D O I
10.1109/MCSoC.2014.39
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A multicomputer architecture is proposed in order to achieve high performance in floating point using FPGA devices. This architecture is used in the system prototype of an instrument that carries out a real-time scientific data analysis aboard the ESA's Solar Orbiter space mission. A novel method for parallelizing the scientific algorithm in multicore systems is developed. A software tool that automatizes the architecture design process and configuration is presented.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [1] A component architecture for high-performance scientific computing
    Allan, Benjamin A.
    Armstrong, Robert
    Bernholdt, David E.
    Bertrand, Felipe
    Chiu, Kenneth
    Dahlgren, Tamara L.
    Damevski, Kostadin
    Elwasif, Wael R.
    Epperly, Thomas G. W.
    Govindaraju, Madhusudhan
    Katz, Daniel S.
    Kohl, James A.
    Krishnan, Manoj
    Kumfert, Gary
    Larson, J. Walter
    Lefantzi, Sophia
    Lewis, Michael J.
    Malony, Allen D.
    McInnes, Lois C.
    Nieplocha, Jarek
    Norris, Boyana
    Parker, Steven G.
    Ray, Jaideep
    Shende, Sameer
    Windus, Theresa L.
    Zhou, Shujia
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2006, 20 (02): : 163 - 202
  • [2] Integrating FPGAs in High-Performance Computing: The Architecture and Implementation Perspective
    Woods, Nathan
    [J]. FPGA 2007: FIFTEENTH ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS, 2007, : 132 - 132
  • [3] High performance computing on cluster and multicore architecture
    Ashari, Ahmad
    Riasetiawan, Mardhani
    [J]. Telkomnika (Telecommunication Computing Electronics and Control), 2015, 13 (04) : 1408 - 1413
  • [4] Integrating FPGAs in High-Performance Computing: Introduction
    Chow, Paul
    Hutton, Mike
    [J]. FPGA 2007: FIFTEENTH ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS, 2007, : 131 - 131
  • [5] Multicore challenges and benefits for high performance scientific computing
    Nielsen, Ida M. B.
    Janssen, Curtis L.
    [J]. SCIENTIFIC PROGRAMMING, 2008, 16 (04) : 277 - 285
  • [6] High-performance parallel and distributed scientific computing with the common component architecture
    Bernholdt, DE
    [J]. COMPUTATIONAL SCIENCE - ICCS 2004, PT 3, PROCEEDINGS, 2004, 3038 : 1 - 1
  • [7] High-Performance Architecture for the Conjugate Gradient Solver on FPGAs
    Wu, Guiming
    Xie, Xianghui
    Dou, Yong
    Wang, Miao
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2013, 60 (11) : 791 - 795
  • [8] Scientific and high-performance computing at FAIR
    Kisel, Ivan
    [J]. 3RD INTERNATIONAL CONFERENCE ON NEW FRONTIERS IN PHYSICS, 2015, 95
  • [9] Trends for high-performance scientific computing
    Camp W.J.
    Thierry P.
    [J]. Leading Edge (Tulsa, OK), 2010, 29 (01): : 44 - 47
  • [10] Curriculum in high-performance scientific computing
    Jessup, ER
    [J]. FRONTIERS IN EDUCATION FIE'96 - 26TH ANNUAL CONFERENCE, PROCEEDINGS, VOLS 1-3: TECHNOLOGY-BASED RE-ENGINEERING ENGINEERING EDUCATION, 1996, : 412 - 414