Bayesian QTL mapping using skewed Student-t distributions

被引:0
|
作者
von Rohr, P
Hoeschele, I [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Dairy Sci, Blacksburg, VA 24061 USA
[2] Virginia Polytech Inst & State Univ, Dept Stat, Blacksburg, VA 24061 USA
[3] Swiss Fed Inst Technol, Swiss Fed Inst Technol, Inst Anim Sci, Zurich, Switzerland
关键词
Bayesian QTL mapping; skewed Student-t distribution; Metropolis-Hastings sampling;
D O I
10.1186/1297-9686-34-1-1
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
In most QTL mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may lead to detection of false positive QTL. To improve the robustness of Bayesian QTL mapping methods, the normal distribution for residuals is replaced with a skewed Student-t distribution. The latter distribution is able to account for both heavy tails and skewness, and both components are each controlled by a single parameter. The Bayesian QTL mapping method using a skewed Student-t distribution is evaluated with simulated data sets under five different scenarios of residual error distributions and QTL effects.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] Bayesian QTL mapping using skewed Student-t distributions
    Peter von Rohr
    Ina Hoeschele
    [J]. Genetics Selection Evolution, 34
  • [2] Objective Bayesian modelling of insurance risks with the skewed Student-t distribution
    Leisen, Fabrizio
    Miguel Marin, J.
    Villa, Cristiano
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2017, 33 (02) : 136 - 151
  • [3] Robust Bayesian mapping of quantitative trait loci using Student-t distribution for residual
    Xin Wang
    Zhongze Piao
    Biye Wang
    Runqing Yang
    Zhixiang Luo
    [J]. Theoretical and Applied Genetics, 2009, 118 : 609 - 617
  • [4] Robust Bayesian mapping of quantitative trait loci using Student-t distribution for residual
    Wang, Xin
    Piao, Zhongze
    Wang, Biye
    Yang, Runqing
    Luo, Zhixiang
    [J]. THEORETICAL AND APPLIED GENETICS, 2009, 118 (03) : 609 - 617
  • [5] Bayesian Inference for State-Space Models With Student-t Mixture Distributions
    Zhang, Tianyu
    Zhao, Shunyi
    Luan, Xiaoli
    Liu, Fei
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4435 - 4445
  • [6] Bayesian Spectral Analysis With Student-t Noise
    Christmas, Jacqueline
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (11) : 2871 - 2878
  • [7] Bayesian calibration under a student-t model
    Branco, M
    Bolfarine, H
    Iglesias, P
    [J]. COMPUTATIONAL STATISTICS, 1998, 13 (03) : 319 - 338
  • [8] Bayesian inference in the noncentral student-t model
    Tsionas, EG
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (01) : 208 - 221
  • [9] Generalized Estimating Equation for the Student-t Distributions
    Gayen, Atin
    Kumar, M. Ashok
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 571 - 575
  • [10] AdMit: Adaptive Mixtures of Student-t Distributions
    Ardia, David
    Hoogerheide, Lennart F.
    van Dijk, Herman K.
    [J]. R JOURNAL, 2009, 1 (01): : 25 - 30