A generalized FQHE trial wave function on spherical geometry

被引:0
|
作者
DeFilippo, S
Lubritto, C
机构
[1] UNIV SALERNO,DIPARTIMENTO FIS TEOR,I-84081 BARONISSI,SALERNO,ITALY
[2] UNIV SALERNO,SMSA,I-84081 BARONISSI,SALERNO,ITALY
[3] INFM,SALERNO,ITALY
[4] IST NAZL FIS NUCL,I-80125 NAPLES,ITALY
来源
PHYSICA B | 1997年 / 230卷
关键词
Hall effect; correlated electron systems; Monte Carlo method;
D O I
10.1016/S0921-4526(96)00825-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Using Haldane's spherical model, new microscopic trial wave functions originally built on disk geometry are mapped onto the sphere. These wave functions were obtained for arbitrary fractional filling by adiabatic interpolation through anyon Hamiltonians. Monte Carlo methods have been employed to evaluate the ground state energy at different fillings using up to 128 electrons on a sphere. Results are consistent with extrapolation of exact system diagonalization and earlier Monte Carlo calculations.
引用
收藏
页码:1064 / 1066
页数:3
相关论文
共 50 条
  • [1] A new FQHE trial wave function for planar and spherical geometry
    DeFilippo, S
    Lubritto, C
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 2469 - 2470
  • [2] GENERALIZED SPHERICAL WAVE MUTUAL COHERENCE FUNCTION
    LEE, MH
    HOLMES, JF
    KERR, JR
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1977, 67 (09) : 1279 - 1281
  • [3] A NEW PROPOSAL FOR A QUASI-ELECTRON TRIAL WAVE-FUNCTION FOR THE FQHE ON A DISK
    KASNER, M
    APEL, W
    [J]. EUROPHYSICS LETTERS, 1992, 20 (08): : 715 - 720
  • [4] FQHE and tt* geometry
    Bergamin, Riccardo
    Cecotti, Sergio
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (12)
  • [5] FQHE and tt* geometry
    Riccardo Bergamin
    Sergio Cecotti
    [J]. Journal of High Energy Physics, 2019
  • [6] WAVE NUCLEAR BURNING IN SPHERICAL GEOMETRY
    Shcherbyna, M. R.
    Tarasov, V. O.
    Smolyar, V. P.
    [J]. JOURNAL OF PHYSICAL STUDIES, 2021, 25 (02):
  • [7] An Algebraic Approach to FQHE Variational Wave Functions
    Mulay, Shashikant
    Quinn, John J.
    Shattuck, Mark
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2019, 22 (02)
  • [8] Uniform asymptotics for the linear Kelvin wave in spherical geometry
    Boyd, John P.
    Zhou, Cheng
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2008, 65 (02) : 655 - 660
  • [9] An Algebraic Approach to FQHE Variational Wave Functions
    Shashikant Mulay
    John J. Quinn
    Mark Shattuck
    [J]. Mathematical Physics, Analysis and Geometry, 2019, 22
  • [10] EVANESCENT WAVE CONTRIBUTION TO THE DIFFRACTED AMPLITUDE FOR SPHERICAL GEOMETRY
    MARATHAY, AS
    ROCK, DF
    [J]. PRAMANA, 1980, 14 (04) : 315 - 320