Screening for idiopathic pulmonary fibrosis using comorbidity signatures in electronic health records

被引:13
|
作者
Onishchenko, Dmytro [1 ]
Marlowe, Robert J. [2 ]
Ngufor, Che G. [3 ]
Faust, Louis J. [3 ]
Limper, Andrew H. [3 ,4 ]
Hunninghake, Gary M. [5 ]
Martinez, Fernando J. [6 ,7 ]
Chattopadhyay, Ishanu [1 ,8 ,9 ]
机构
[1] Univ Chicago, Dept Med, Chicago, IL 60637 USA
[2] Spencer Fontayne Corp, Jersey, NJ USA
[3] Mayo Clin, Coll Med & Sci, Rochester, MN USA
[4] Mayo Clin, Thorac Res Unit, Coll Med & Sci, Rochester, MN USA
[5] Harvard Med Sch, Brigham & Womens Hosp, Interstitial Lung Dis Program, Boston, MA USA
[6] Weill Cornell Med Coll, Bruce Webster Prof Internal Med, Med, New York, NY USA
[7] Weill Cornell Med Ctr, Div Pulm & Crit Care Med, Weill Cornell Med & New York Presbyterian, New York, NY USA
[8] Univ Chicago, Committee Genet Genom & Syst Biol, Chicago, IL 60637 USA
[9] Univ Chicago, Committee Quantitat Methods Social Behav & Hlth, Chicago, IL 60637 USA
基金
美国国家卫生研究院;
关键词
EARLY-DIAGNOSIS; CONFIDENCE-INTERVALS; RISK PREDICTION; SURVIVAL; MORTALITY; ONSET;
D O I
10.1038/s41591-022-02010-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Idiopathic pulmonary fibrosis (IPF) is a lethal fibrosing interstitial lung disease with a mean survival time of less than 5 years. Nonspecific presentation, a lack of effective early screening tools, unclear pathobiology of early-stage IPF and the need for invasive and expensive procedures for diagnostic confirmation hinder early diagnosis. In this study, we introduce a new screening tool for IPF in primary care settings that requires no new laboratory tests and does not require recognition of early symptoms. Using subtle comorbidity signatures identified from the history of medical encounters of individuals, we developed an algorithm, called the zero-burden comorbidity risk score for IPF (ZCoR-IPF), to predict the future risk of an IPF diagnosis. ZCoR-IPF was trained on a national insurance claims database and validated on three independent databases, comprising a total of 2,983,215 participants, with 54,247 positive cases. The algorithm achieved positive likelihood ratios greater than 30 at a specificity of 0.99 across different cohorts, for both sexes, and for participants with different risk states and history of confounding diseases. The area under the receiver-operating characteristic curve for ZCoR-IPF in predicting IPF exceeded 0.88 and was approximately 0.84 at 1 and 4 years before a conventional diagnosis, respectively. Thus, if adopted, ZCoR-IPF can potentially enable earlier diagnosis of IPF and improve outcomes of disease-modifying therapies and other interventions. A machine learning algorithm can predict the future risk of idiopathic pulmonary fibrosis, a disease that is difficult to diagnose at its early stages, based on comorbidity signatures in electronic health records.
引用
收藏
页码:2107 / +
页数:27
相关论文
共 50 条
  • [1] Screening for idiopathic pulmonary fibrosis using comorbidity signatures in electronic health records
    Dmytro Onishchenko
    Robert J. Marlowe
    Che G. Ngufor
    Louis J. Faust
    Andrew H. Limper
    Gary M. Hunninghake
    Fernando J. Martinez
    Ishanu Chattopadhyay
    [J]. Nature Medicine, 2022, 28 : 2107 - 2116
  • [2] Molecular Signatures of Idiopathic Pulmonary Fibrosis
    Konigsberg, Iain R.
    Borie, Raphael
    Walts, Avram D.
    Cardwell, Jonathan
    Rojas, Mauricio
    Metzger, Fabian
    Hauck, Stefanie M.
    Fingerlin, Tasha E.
    Yang, Ivana, V
    Schwartz, David A.
    [J]. AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2021, 65 (04) : 430 - 441
  • [3] Biomarker signatures for progressive idiopathic pulmonary fibrosis
    Clynick, Britt
    Corte, Tamera J.
    Jo, Helen E.
    Stewart, Iain
    Glaspole, Ian N.
    Grainge, Christopher
    Maher, Toby M.
    Navaratnam, Vidya
    Hubbard, Richard
    Hopkins, Peter M. A.
    Reynolds, Paul N.
    Chapman, Sally
    Zappala, Christopher
    Keir, Gregory J.
    Cooper, Wendy A.
    Mahar, Annabelle M.
    Ellis, Samantha
    Goh, Nicole S.
    De Jong, Emma
    Cha, Lilian
    Tan, Dino B. A.
    Leigh, Lucy
    Oldmeadow, Christopher
    Walters, E. Haydn
    Jenkins, R. Gisli
    Moodley, Yuben
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2022, 59 (03)
  • [4] Malnutrition in idiopathic pulmonary fibrosis: the great forgotten comorbidity!
    Torrisi, Sebastiano Emanuele
    Ley, Brett
    Kreuter, Michael
    Wijsenbeek, Marlies
    Vittinghoff, Eric
    Collard, Harold R.
    Vancheri, Carlo
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2019, 53 (05)
  • [5] Idiopathic pulmonary fibrosis and subclinical hypothyroidism: an underestimated comorbidity
    AboElNaga, Heba H.
    ElSherbeny, Alyaa A.
    AbdelHady, Emad A.
    [J]. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS, 2019, 68 (01): : 50 - 56
  • [6] Lung cancer as a comorbidity in idiopathic pulmonary fibrosis (IPF)
    Kreuter, Michael
    Ehlers-Tenenbaum, Svenja
    Wenz, Heinrich
    Hoffmann, Hans
    Schnabel, Philipp A.
    Heussel, Claus Peter
    Puderbach, Michael
    Herth, Felix J. F.
    Warth, Arne
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2012, 40
  • [7] Validation of the recording of idiopathic pulmonary fibrosis in routinely collected electronic healthcare records in England
    Morgan, Ann
    Gupta, Rikisha Shah
    George, Peter M.
    Quint, Jennifer K.
    [J]. BMC PULMONARY MEDICINE, 2023, 23 (01)
  • [8] Validation of Coding of Idiopathic Pulmonary Fibrosis in Primary and Secondary Health Records in the UK
    Shah, R.
    Morgan, A. D.
    George, P. M.
    Quint, J. K.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [9] Validation of the recording of idiopathic pulmonary fibrosis in routinely collected electronic healthcare records in England
    Ann Morgan
    Rikisha Shah Gupta
    Peter M. George
    Jennifer K. Quint
    [J]. BMC Pulmonary Medicine, 23
  • [10] Comorbidity network analysis using graphical models for electronic health records
    Zhao, Bo
    Huepenbecker, Sarah
    Zhu, Gen
    Rajan, Suja S.
    Fujimoto, Kayo
    Luo, Xi
    [J]. FRONTIERS IN BIG DATA, 2023, 6