Shrinkage estimation strategy in quasi-likelihood models

被引:11
|
作者
Ahmed, S. Ejaz [2 ]
Fallahpour, Saber [1 ]
机构
[1] Univ Windsor, Dept Math & Stat, Windsor, ON N9B 3P4, Canada
[2] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Shrinkage estimator; Pretest estimator; Quasi-likelihood; Asymptotic distributional bias and risk; Lasso; GENERALIZED LINEAR-MODELS; REGRESSION-MODELS;
D O I
10.1016/j.spl.2012.08.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we consider the estimation problem for the quasi-likelihood model in presence of non-sample information (NSI). More specifically, we introduce a shrinkage estimation strategy for simultaneous model selection and parameter estimation by using the maximum quasi-likelihood estimates as the benchmark estimator, and define the pretest estimator (PTE), shrinkage estimator (SE) and positive-rule shrinkage estimator (PSE). Furthermore, we apply the lasso-type estimation strategy and compare the relative performance of lasso with the suggested estimators. The shrinkage estimators are shown to be efficient estimators compared to others. When the NSI is true the PTE has less risk compared to shrinkage and lasso estimators. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2170 / 2179
页数:10
相关论文
共 50 条