Network traffic prediction for detecting DDoS attacks in IEC 61850 communication networks

被引:0
|
作者
da Silva, L. E. [1 ,3 ,4 ]
Coury, D., V [2 ,4 ]
机构
[1] Fed Ctr Technol Educ Minas Gerais, Varginha Unit, Comp & Civil Engn Dept, Av Imigrantes 1000, BR-37022560 Varginha, MG, Brazil
[2] Univ Sao Paulo, Sao Carlos Sch Engn, Elect & Comp Eng Dept, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
[3] CEFET MG, Comp & Civil Eng Dept, Av Imigrantes 1000, BR-37022560 Varginha, MG, Brazil
[4] Univ Sao Paulo, EESC, Elect & Comp Engn Dept, Av Trabalhador Sao Carlense 400, BR-13566590 Sao Carlos, SP, Brazil
关键词
Traffic prediction; Cyber attacks; IEC; 61850; Artificial neural networks; Distributed Denial-of-Service; CYBER SECURITY; STANDARDS;
D O I
10.1016/j.compeleceng.2020.106793
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the development of a Generic Object Oriented Substation Event (GOOSE) message traffic prediction system using a Nonlinear Autoregressive Model with Exogenous Input (NARX) input. An Artificial Neural Network was adopted to detect Distributed Denial-of-Service (DDoS) attacks in networks using the IEC-61850 protocol. The system uses the OpenFlow protocol to split the multicast groups of GOOSE messages, in which each transmission is analysed separately. The implemented intelligent system used 62 prediction steps with a percentage relative error of up to 5%. The system was embedded in the ZYBO development platform with the OpenMul controller. The results showed that the percentage relative error of each sample presents a determinant signature for classifying the state of operation of the electrical system, making it possible to identify DDoS attacks in communication networks for electric power substations.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Network traffic prediction for detecting DDoS attacks in IEC 61850 communication networks
    da Silva, L.E.
    Coury, D.V.
    [J]. Computers and Electrical Engineering, 2020, 87
  • [2] Detecting DDoS Attacks Using the Analysis of Network Traffic as Dynamical System
    Krasnov, A. E.
    Nikol'skii, D. N.
    Repin, D. S.
    Galyaev, V. S.
    Zykova, E. A.
    [J]. 2018 INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE MODERN COMPUTER NETWORK TECHNOLOGIES (MONETEC 2018), 2018,
  • [3] Detecting DDoS attacks by analyzing the dynamics and interrelation of network traffic characteristics
    Krasnov, A. E.
    Nadezhdin, E. N.
    Nikol'skii, D. N.
    Repin, D. S.
    Galyaev, V. S.
    [J]. VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2018, 28 (03): : 407 - 418
  • [4] Analysis of Cyber-Attacks on IEC 61850 Networks
    Elgargouri, Ahmed
    Elmusrati, Mohammed
    [J]. 2017 11TH IEEE INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT 2017), 2017, : 252 - 255
  • [5] A Neural Network Model for Detecting DDoS Attacks Using Darknet Traffic Features
    Ali, Siti Hajar Aminah
    Ozawa, Seiichi
    Ban, Tao
    Nakazato, Junji
    Shimamura, Jumpei
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2979 - 2985
  • [6] IEC 61850 Traffic Analysis in Electrical Automation Networks
    Carmo, Ubiratan
    Sadok, Djamel H.
    Kelner, Judith
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM), 2015, : 466 - 471
  • [7] Detecting network attacks in the Internet via statistical network traffic normality prediction
    Jiang J.
    Papavassiliou S.
    [J]. Journal of Network and Systems Management, 2004, 12 (1) : 51 - 72
  • [8] A Novel Visualization Method for Detecting DDoS Network Attacks
    Zhang, Jiawan
    Yang, Guoqiang
    Lu, Liangfu
    Huang, MaoLin
    Che, Ming
    [J]. VISUAL INFORMATION COMMUNICATION, 2010, : 185 - +
  • [9] Detecting DDoS attacks using adversarial neural network
    Mustapha, Ali
    Khatoun, Rida
    Zeadally, Sherali
    Chbib, Fadlallah
    Fadlallah, Ahmad
    Fahs, Walid
    El Attar, Ali
    [J]. COMPUTERS & SECURITY, 2023, 127
  • [10] Network traffic anomalies automatic detection in DDoS attacks
    Orekhov, Andrey V.
    Orekhov, Aleksey A.
    [J]. VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2023, 19 (02): : 251 - 263