Energetics of ligand binding to the DNA minor groove

被引:0
|
作者
Kostjukov, Viktor V. [1 ]
Santiago, Adrian A. Hernandez [2 ]
Rodriguez, Fernando Rojas [2 ]
Castilla, Salvador Rosas [2 ]
Parkinson, John A. [3 ]
Evstigneev, Maxim P. [1 ]
机构
[1] Sevastopol Natl Tech Univ, Dept Phys, UA-99053 Sevastopol, Crimea, Ukraine
[2] Autonomous Univ Puebla, Fac Chem, Puebla 72570, Mexico
[3] Univ Strathclyde, WestCHEM Dept Pure & Appl Chem, Glasgow G1 1XL, Lanark, Scotland
关键词
MOLECULAR-DYNAMICS SIMULATIONS; FREE-ENERGY ANALYSIS; HYDRATION CHANGES; AROMATIC LIGANDS; ELECTROSTATIC CONTRIBUTION; CONFIGURATIONAL ENTROPY; DEPENDENT BINDING; FORCE-FIELD; NETROPSIN; THERMODYNAMICS;
D O I
10.1039/c2cp40182g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work the decomposition of the total Gibbs free energy of ligand-DNA binding onto various physical terms was accomplished for the group of nine DNA minor groove binders (MGB ligands) differing in both structure and charge state. The decomposition protocol includes the analysis of the most complete set of physical factors known to contribute to the complexation process, viz. the net change in the number of degrees of freedom (translational, rotational, vibrations of the chemical bonds and vibrations of the ligand as a whole within the binding site), the conformational entropy, van der Waals, electrostatic and hydrophobic interactions, the polyelectrolyte contribution and the net effect of changes in the number of hydrogen bonds. All of these processes are further decomposed into the interaction with the solvent and the interaction of the ligand with DNA. The principal outcome of the decomposition is the possibility of performing a comparative analysis of the energetic contribution of various physical terms and provide an answer to the question concerning what physical factors stabilize or destabilize the complexes of MGB ligands with DNA.
引用
收藏
页码:5588 / 5600
页数:13
相关论文
共 50 条
  • [1] Energetics of unusual DNA minor groove binding compounds
    Nguyen, B
    Tanious, FA
    Patrick, D
    Tidwell, RR
    Wilson, WD
    BIOPHYSICAL JOURNAL, 2005, 88 (01) : 409A - 409A
  • [2] Molecular Mechanism of Ligand Binding to the Minor Groove of DNA
    Brossard, E. E.
    Corcelli, S. A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (19): : 4583 - 4590
  • [3] The Role of the DNA Backbone in Minor-Groove Ligand Binding
    Diaz-Gomez, Dalia G.
    Galindo-Murillo, Rodrigo
    Cortes-Guzman, Fernando
    CHEMPHYSCHEM, 2017, 18 (14) : 1909 - 1915
  • [4] The energetics of molecular recognition of the DNA minor groove
    Nguyen, B
    Hamelberg, D
    Wilson, D
    BIOPHYSICAL JOURNAL, 2004, 86 (01) : 138A - 138A
  • [5] DIMERIZATION ENERGETICS OF DNA MINOR GROOVE BINDERS
    Kostjukov, V. V.
    Miloserdova, Yu. G.
    Shram, O. A.
    Rubinson, M. A.
    Evstigneev, M. P.
    UKRAINIAN JOURNAL OF PHYSICS, 2014, 59 (05): : 461 - 472
  • [6] DNA Minor Groove Binding by Diamidine: Water Molecule in Ligand Recognition
    Ma Guo-Zheng
    Qiu Ya-Fang
    Nan Jun-Min
    Xiao Xin
    ACTA PHYSICO-CHIMICA SINICA, 2008, 24 (10) : 1917 - 1921
  • [7] SALT EFFECTS ON LIGAND-DNA BINDING - MINOR-GROOVE BINDING ANTIBIOTICS
    MISRA, VK
    SHARP, KA
    FRIEDMAN, RA
    HONIG, B
    JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (02) : 245 - 263
  • [8] DNA minor groove binding agents
    Damia, G
    Broggini, M
    DRUGS OF THE FUTURE, 2005, 30 (03) : 301 - 309
  • [9] Radiosensitisation of cultured cells by brostallicin - a brominated minor groove binding DNA ligand
    Martin, R
    Geroni, C
    Fuller, S
    Lobachevsky, P
    Radford, I
    Fowst, C
    Tursi, J
    EUROPEAN JOURNAL OF CANCER, 2002, 38 : S27 - S27
  • [10] Sequence-specific recognition of DNA by a major and minor groove binding ligand
    Szewczyk, JW
    Baird, EE
    Dervan, PB
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 1996, 35 (13-14) : 1487 - 1489