Huangjinya Black Tea Alleviates Obesity and Insulin Resistance via Modulating Fecal Metabolome in High-Fat Diet-Fed Mice

被引:33
|
作者
Xu, Jialin [1 ]
Li, Mingxi [2 ]
Zhang, Yi [1 ]
Chu, Suo [1 ]
Huo, Yan [1 ]
Zhao, Jie [1 ]
Wan, Chunpeng [2 ]
机构
[1] Northeastern Univ, Coll Life & Hlth Sci, Inst Biochem & Mol Biol, Shenyang 110819, Peoples R China
[2] Jiangxi Agr Univ, Coll Agron, Res Ctr Tea & Tea Culture, Nanchang 330045, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
black tea; fecal metabolome; Huangjinya; lipolysis; liver steatosis; obesity; CHAIN AMINO-ACIDS; ADIPOSE-TISSUE; THEAFLAVINS; POLYPHENOLS; MITOCHONDRIAL; LIPOLYSIS; PATHWAY;
D O I
10.1002/mnfr.202000353
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Scope: Huangjinya is a light-sensitive tea mutant containing low levels of tea polyphenols. Currently, most studies focused on characteristics formation, free amino acid metabolism and phytochemical purification. The biological activity of Huangjinya black tea (HJBT) on metabolic syndrome regarding fecal metabolome modulation is unavailable and is studied herein. Methods and results: High-fat diet (HFD)-fed mice are treated with HJBT for 9 weeks, various metabolic biomarkers and fecal metabolites are determined. HJBT reduces adipogenic and lipogenic gene expression, enhances lipolytic gene expression, decreases adipocyte expansion, and prevents the development of obesity. HJBT reduces lipogenic gene expression, increases fatty acid oxidation-related genes expression, which alleviates liver steatosis. HJBT enhances glucose/insulin tolerance, increases insulin/Akt signaling, attenuates hyperlipidemia and hyperglycemia, prevents the onset of insulin resistance. HJBT modulates bile acid metabolism, promotes secondary/primary bile acid ratio; increases short-chain fatty acids production, promotes saturated and polyunsaturated fatty acids content; reduces carnitines and phosphocholines, but increases myo-inositol content; decreases branched-chain and aromatic amino acids content; increases the metabolite content related to pentose phosphate pathway. Conclusion: This study reported the association between fecal metabolome modulation and metabolism improvement due to HJBT administration, proposes HJBT as a dietary intervention for preventing obesity and metabolic disorders.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Acidic Activated Charcoal Prevents Obesity and Insulin Resistance in High-Fat Diet-Fed Mice
    Zhang, Xuguang
    Diao, Pan
    Yokoyama, Hiroaki
    Inoue, Yoshiki
    Tanabe, Kazuhiro
    Wang, Xiaojing
    Hayashi, Chihiro
    Yokoyama, Tomoki
    Zhang, Zhe
    Hu, Xiao
    Nakajima, Takero
    Kimura, Takefumi
    Nakayama, Jun
    Nakamuta, Makoto
    Tanaka, Naoki
    FRONTIERS IN NUTRITION, 2022, 9
  • [2] Polyphenol-rich oolong tea alleviates obesity and modulates gut microbiota in high-fat diet-fed mice
    Li, Ang
    Wang, Jin
    Kou, Ruixin
    Chen, Mengshan
    Zhang, Bowei
    Zhang, Yan
    Liu, Jingmin
    Xing, Xiaolong
    Peng, Bo
    Wang, Shuo
    FRONTIERS IN NUTRITION, 2022, 9
  • [3] Early and Chronic Exposure to Penicillin Increases Obesity and Insulin Resistance in High-Fat Diet-Fed Mice
    Noh, Hye Lim
    Suk, Sujin
    Friedline, Randall H.
    Hu, Xiaodi
    Tran, Duy A.
    Tauer, Lauren A.
    Choi, Jungeun
    Ko, Min-Ji
    Kim, Brandon
    Surapaneni, Tanuj
    Blaser, Martin J.
    Kim, Jason K.
    DIABETES, 2019, 68
  • [4] Propionylated high-amylose maize starch alleviates obesity by modulating gut microbiota in high-fat diet-fed mice
    Xie, Zhuqing
    Yao, Minghua
    Castro-Mejia, Josue L.
    Ma, Ming
    Zhu, Yuyan
    Fu, Xiong
    Huang, Qiang
    Zhang, Bin
    JOURNAL OF FUNCTIONAL FOODS, 2023, 102
  • [5] Hepatocyte growth factor alleviates hepatic insulin resistance and lipid accumulation in high-fat diet-fed mice
    Jing, Yali
    Sun, Qingmin
    Xiong, Xiaolu
    Meng, Ran
    Tang, Sunyinyan
    Cao, Shu
    Bi, Yan
    Zhu, Dalong
    JOURNAL OF DIABETES INVESTIGATION, 2019, 10 (02) : 251 - 260
  • [6] Resveratrol ameliorates metabolic disorders and insulin resistance in high-fat diet-fed mice
    Gong, Longlong
    Guo, Shuang
    Zou, Zhengzhi
    LIFE SCIENCES, 2020, 242
  • [7] Effects of diallyl disulfide administration on insulin resistance in high-fat diet-fed mice
    Tsuzuki, Takamasa
    Negishi, Takayuki
    Yukawa, Kazunori
    NUTRITION, 2024, 118
  • [8] Effects of lobeglitazone on insulin resistance and hepatic steatosis in high-fat diet-fed mice
    Choi, Bong-Hoi
    Jin, Zhen
    Yi, Chin-ok
    Oh, Juhong
    Jeong, Eun Ae
    Lee, Jong Youl
    Park, Kyung-ah
    Kim, Kyung Eun
    Lee, Jung Eun
    Kim, Hyun-Jin
    Hahm, Jong Ryeal
    Roh, Gu Seob
    PLOS ONE, 2018, 13 (07):
  • [9] Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota
    Wang, Pan
    Gao, Jianpeng
    Ke, Weixin
    Wang, Jing
    Li, Daotong
    Liu, Ruolin
    Jia, Yan
    Wang, Xuehua
    Chen, Xin
    Chen, Fang
    Hu, Xiaosong
    FREE RADICAL BIOLOGY AND MEDICINE, 2020, 156 : 83 - 98
  • [10] Galantamine Alleviates Inflammation and Other Obesity-Associated Complications in High-Fat Diet-Fed Mice
    Sanjaya K Satapathy
    Mahendar Ochani
    Meghan Dancho
    LaQueta K Hudson
    Mauricio Rosas-Ballina
    Sergio I Valdes-Ferrer
    Peder S Olofsson
    Yael Tobi Harris
    Jesse Roth
    Sangeeta Chavan
    Kevin J Tracey
    Valentin A Pavlov
    Molecular Medicine, 2011, 17 : 599 - 606