A conductive metal-organic framework photoanode

被引:13
|
作者
Pattengale, Brian [1 ,2 ]
Freeze, Jessica G. [1 ,2 ]
Guberman-Pfeffer, Matthew J. [3 ]
Okabe, Ryotaro [3 ,4 ]
Ostresh, Sarah [1 ,2 ]
Chaudhuri, Subhajyoti [1 ,2 ]
Batista, Victor S. [1 ,2 ]
Schmuttenmaer, Charles A. [1 ,2 ]
机构
[1] Yale Univ, Dept Chem, 225 Prospect St, New Haven, CT 06520 USA
[2] Yale Univ, Yale Energy Sci Inst, New Haven, CT 06520 USA
[3] Yale Univ, Dept Mol Biophys & Biochem, Yale Microbial Sci Inst, POB 6666, New Haven, CT 06520 USA
[4] Tokyo Inst Technol, Sch Life Sci & Technol, Midori Ku, Nagatsuta 4259, Yokohama, Kanagawa 2268503, Japan
关键词
SENSITIZED SOLAR-CELLS; ELECTRON INJECTION; ARTIFICIAL PHOTOSYNTHESIS; ENERGY-TRANSFER; TRANSIENT PHOTOCONDUCTIVITY; CHARGE RECOMBINATION; WATER; TIO2; DESIGN; PORPHYRIN;
D O I
10.1039/d0sc04302h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the development of photosensitizing arrays based on conductive metal-organic frameworks (MOFs) that enable light harvesting and efficient charge separation. Zn2TTFTB (TTFTB = tetrathiafulvalene tetrabenzoate) MOFs are deposited directly onto TiO(2)photoanodes and structurally characterized by pXRD and EXAFS measurements. Photoinduced interfacial charge transfer dynamics are investigated by combining time-resolved THz spectroscopy and quantum dynamics simulations. Sub-600 fs electron injection into TiO(2)is observed for Zn2TTFTB-TiO(2)and is compared to the corresponding dynamics for TTFTB-TiO(2)analogues that lack the extended MOF architecture. Rapid electron injection from the MOF into TiO(2)is enhanced by facile migration of the hole away from the interfacial region. Holes migrate through strongly coupled HOMO orbitals localized on the tetrathiafulvalene cores of the columnar stacks of the MOF, whereas electrons are less easily transferred through the spiral staircase arrangement of phenyl substituents of the MOF. The reported findings suggest that conductive MOFs could be exploited as novel photosensitizing arrays in applications to slow, and thereby make difficult, photocatalytic reactions such as those required for water-splitting in artificial photosynthesis.
引用
收藏
页码:9593 / 9603
页数:11
相关论文
共 50 条
  • [1] Recent Progress on Conductive Metal-Organic Framework Films
    Mu, Xueyang
    Wang, Weike
    Sun, Chongcai
    Wang, Jiulong
    Wang, Chengbing
    Knez, Mato
    [J]. ADVANCED MATERIALS INTERFACES, 2021, 8 (09)
  • [2] Stabilization of lithium metal anodes by conductive metal-organic framework architectures
    Zhao, Jing
    Yuan, Hongye
    Wang, Guiling
    Lim, Xiao Feng
    Ye, Hualin
    Wee, Vanessa
    Fang, Yongzheng
    Lee, Jim Yang
    Zhao, Dan
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (20) : 12099 - 12108
  • [3] Metal-organic framework/conductive polymer hybrid materials for supercapacitors
    Dedek, Ivan
    Kupka, Vojtech
    Jakubec, Petr
    Sedajova, Veronika
    Jayaramulu, Kolleboyina
    Otyepka, Michal
    [J]. APPLIED MATERIALS TODAY, 2022, 26
  • [4] Fabrication of electrically conductive metal-organic framework thin films
    Talin, Alec
    Leonard, Francois
    Leong, Kirsty
    SPataru, Catalin
    Foster, Michael
    Stavila, Vitalie
    Allendorf, Mark
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [5] Electronically conductive metal-organic framework-based materials
    Kung, Chung-Wei
    Han, Po-Chun
    Chuang, Cheng-Hsun
    Wu, Kevin C. -W.
    [J]. APL MATERIALS, 2019, 7 (11)
  • [6] Encapsulation of a Metal-Organic Polyhedral in the Pores of a Metal-Organic Framework
    Qiu, Xuan
    Zhong, Wei
    Bai, Cuihua
    Li, Yingwei
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (04) : 1138 - 1141
  • [7] Hydrolytic Conversion of a Metal-Organic Polyhedron into a Metal-Organic Framework
    Mallick, Arijit
    Garai, Bikash
    Diaz, David Diaz
    Banerjee, Rahul
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (51) : 13755 - 13759
  • [8] A designed metal-organic framework based on a metal-organic polyhedron
    Zou, Yang
    Park, Mira
    Hong, Seunghee
    Lah, Myoung Soo
    [J]. CHEMICAL COMMUNICATIONS, 2008, (20) : 2340 - 2342
  • [9] Electrically Conductive Metal-Organic Frameworks
    Xie, Lilia S.
    Skorupskii, Grigorii
    Dinca, Mircea
    [J]. CHEMICAL REVIEWS, 2020, 120 (16) : 8536 - 8580
  • [10] Luminescent conductive metal-organic frameworks
    Skorupskii, Grigorii
    Dinca, Mircea
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256