Student perspectives on data provision and use: Starting to unpack disciplinary differences

被引:10
|
作者
McPherson, Jen [1 ]
Tong, Huong Ly [2 ]
Fatt, Scott J. [2 ]
Liu, Danny Y. T. [3 ]
机构
[1] Macquarie Univ, Fac Business & Econ, N Ryde, NSW, Australia
[2] Macquarie Univ, N Ryde, NSW, Australia
[3] Macquarie Univ, Learning & Teaching Ctr, N Ryde, NSW, Australia
关键词
Disciplinary differences; student needs; learning analytics; knowledge; Legitimation Code Theory; sociology of education; ANALYTICS;
D O I
10.1145/2883851.2883945
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
How can we best align learning analytics practices with disciplinary knowledge practices in order to support student learning? Although learning analytics itself is an interdisciplinary field, it tends to take a 'one-size-fits-all' approach to the collection, measurement, and reporting of data, overlooking disciplinary knowledge practices. In line with a recent trend in higher education research, this paper considers the contribution of a realist sociology of education to the field of learning analytics, drawing on findings from recent student focus groups at an Australian university. It examines what learners say about their data needs with reference to organizing principles underlying knowledge practices within their disciplines. The key contribution of this paper is a framework that could be used as the basis for aligning the provision and/or use of data in relation to curriculum, pedagogy, and assessment with disciplinary knowledge practices. The framework extends recent research in Legitimation Code Theory, which understands disciplinary differences in terms of the principles that underpin knowledge-building. The preliminary analysis presented here both provides a tool for ensuring a fit between learning analytics practices and disciplinary practices and standards for achievement, and signals disciplinarity as an important consideration in learning analytics practices.
引用
收藏
页码:158 / 167
页数:10
相关论文
共 50 条