Exercise Training Protects against Atorvastatin-Induced Skeletal Muscle Dysfunction and Mitochondrial Dysfunction in the Skeletal Muscle of Rats

被引:5
|
作者
Seo, Dae Yun [1 ]
Heo, Jun-Won [2 ]
No, Mi-Hyun [2 ]
Yoo, Su-Zi [2 ]
Ko, Jeong Rim [1 ]
Park, Dong-Ho [2 ]
Kang, Ju-Hee [3 ,4 ]
Kim, Chang-Ju [5 ]
Jung, Su-Jeen [6 ]
Han, Jin [1 ]
Kwak, Hyo-Bum [2 ]
机构
[1] Inje Univ, Dept Physiol, Natl Res Lab Mitochondrial Signaling,Cardiovasc &, BK21 Plus Project Team,Coll Med,Smart Marine Ther, Busan 47392, South Korea
[2] Inha Univ, Dept Kinesiol, Incheon 22212, South Korea
[3] Inha Univ, Dept Pharmacol, Sch Med, Incheon 22212, South Korea
[4] Inha Univ, Sch Med, Med Toxicol Res Ctr, Incheon 22212, South Korea
[5] Kyung Hee Univ, Coll Med, Dept Physiol, Seoul 02447, South Korea
[6] Seoil Univ, Dept Leisure Sports, Seoul 02192, South Korea
基金
新加坡国家研究基金会;
关键词
statin; exercise; myopathy; mitochondria; skeletal muscle; OXIDATIVE STRESS; INDUCED MYOPATHY; CREATINE-KINASE; STATIN USE; RESISTANCE; MECHANISM; CALCIUM; MICE; AGE;
D O I
10.3390/jcm9072292
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Statins are used to prevent and treat atherosclerotic cardiovascular disease, but they also induce myopathy and mitochondrial dysfunction. Here, we investigated whether exercise training prevents glucose intolerance, muscle impairment, and mitochondrial dysfunction in the skeletal muscles of Wistar rats treated with atorvastatin (5 mg kg(-1)day(-1)) for 12 weeks. The rats were assigned to the following three groups: the control (CON), atorvastatin-treated (ATO), and ATO plus aerobic exercise training groups (ATO+EXE). The ATO+EXE group exhibited higher glucose tolerance and forelimb strength and lower creatine kinase levels than the other groups. Mitochondrial respiratory and Ca(2+)retention capacity was significantly lower in the ATO group than in the other groups, but exercise training protected against atorvastatin-induced impairment in both the soleus and white gastrocnemius muscles. The mitochondrial H(2)O(2)emission rate was relatively higher in the ATO group and lower in the ATO+EXE group, in both the soleus and white gastrocnemius muscles, than in the CON group. In the soleus muscle, the Bcl-2, SOD1, SOD2, Akt, and AMPK phosphorylation levels were significantly higher in the ATO+EXE group than in the ATO group. In the white gastrocnemius muscle, the SOD2, Akt, and AMPK phosphorylation levels were significantly higher in the ATO+EXE group than in the ATO group. Therefore, exercise training might regulate atorvastatin-induced muscle damage, muscle fatigue, and mitochondrial dysfunction in the skeletal muscles.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] Nitric oxide prevents atorvastatin-induced skeletal muscle dysfunction and alterations in mice
    D'Antona, Giuseppe
    Mascaro, Anna
    Monopoli, Angela
    Miglietta, Daniela
    Ongini, Ennio
    Bottinelli, Roberto
    [J]. MUSCLE & NERVE, 2013, 47 (01) : 72 - 80
  • [2] Exercise, mitochondrial dysfunction and inflammasomes in skeletal muscle
    Slavin, Mikhaela B.
    Khemraj, Priyanka
    Hood, David A.
    [J]. BIOMEDICAL JOURNAL, 2024, 47 (01)
  • [3] Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle
    Heo, Jun-Won
    No, Mi-Hyun
    Park, Dong-Ho
    Kang, Ju-Hee
    Seo, Dae Yun
    Han, Jin
    Neufer, P. Darrell
    Kwak, Hyo-Bum
    [J]. KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY, 2017, 21 (06): : 567 - 577
  • [4] Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction
    Gilliam, Laura A. A.
    Lark, Daniel S.
    Reese, Lauren R.
    Torres, Maria J.
    Ryan, Terence E.
    Lin, Chien-Te
    Cathey, Brook L.
    Neufer, P. Darrell
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2016, 311 (02): : E293 - E301
  • [5] Chemerin-induced mitochondrial dysfunction in skeletal muscle
    Xie, Qihai
    Deng, Yujie
    Huang, Chenglin
    Liu, Penghao
    Yang, Ying
    Shen, Weili
    Gao, Pingjin
    [J]. JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2015, 19 (05) : 986 - 995
  • [6] Skeletal muscle mitochondrial dysfunction & diabetes
    Sreekumar, Raghavakaimal
    Nair, K. Sreekumaran
    [J]. INDIAN JOURNAL OF MEDICAL RESEARCH, 2007, 125 (03) : 399 - 410
  • [7] Mitochondrial Dysfunction in Skeletal Muscle Pathologies
    Abrigo, Johanna
    Simon, Felipe
    Cabrera, Daniel
    Vilos, Cristian
    Cabello-Verrugio, Claudio
    [J]. CURRENT PROTEIN & PEPTIDE SCIENCE, 2019, 20 (06) : 536 - 546
  • [8] Exercise protects against cardiac and skeletal muscle dysfunction in a mouse model of inflammatory arthritis
    Huffman, Kim M.
    Andonian, Brian J.
    Abraham, Dennis M.
    Bareja, Akshay
    Lee, David E.
    Katz, Lauren H.
    Huebner, Janet L.
    Kraus, William E.
    White, James P.
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 2021, 130 (03) : 853 - 864
  • [9] Mitochondrial Dysfunction of skeletal muscle during septic shock in rats
    Pottecher, J.
    Lebas, B.
    Lang, A.
    Clerejehl, R.
    Schneider, F.
    Diemunsch, P.
    Geny, B.
    [J]. ANNALES FRANCAISES D ANESTHESIE ET DE REANIMATION, 2014, 33 : A106 - A107
  • [10] Overexpression of Skeletal Muscle Nrf2 Protects Against Aging -Associated Dysfunction in Skeletal Muscle and Heart
    Gao, Lie
    Wang, Lucas
    Hackfort, Bryan T.
    Zucker, Irving H.
    [J]. FASEB JOURNAL, 2022, 36