Small points on rational subvarieties of tori

被引:11
|
作者
Amoroso, Francesco [1 ]
Viada, Evelina [2 ]
机构
[1] Univ Caen, Math Lab, F-14032 Caen, France
[2] Univ Basel, Dept Math, CH-4051 Basel, Switzerland
关键词
Heights; Lehmer's problem; HEIGHT;
D O I
10.4171/CMH/256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a subvariety of a torus defined over the rational numbers. We study the distribution of points of small Well's height on V. We simplify the proof and we improve previous results by the first author and S. David. We obtain a totally explicit version of a generalized Dobrowolski result on the Lehmer problem.
引用
收藏
页码:355 / 383
页数:29
相关论文
共 50 条
  • [1] Points on subvarieties of Tori
    Evertse, JH
    PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, 2002, : 214 - 230
  • [2] IRREDUCIBLE SUBVARIETIES AND RATIONAL POINTS
    GREENLEAF, N
    AMERICAN JOURNAL OF MATHEMATICS, 1965, 87 (01) : 25 - +
  • [3] Effective results for points on certain subvarieties of tori
    Berczes, Attila
    Gyory, Kalman
    Evertse, Jan-Hendrik
    Pontreau, Corentin
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 147 : 69 - 94
  • [4] Analytic subvarieties with many rational points
    Gasbarri, C.
    MATHEMATISCHE ANNALEN, 2010, 346 (01) : 199 - 243
  • [5] Analytic subvarieties with many rational points
    C. Gasbarri
    Mathematische Annalen, 2010, 346 : 199 - 243
  • [6] On subvarieties of tori
    Rémond, G
    COMPOSITIO MATHEMATICA, 2002, 134 (03) : 337 - 366
  • [7] SMALL POINTS ON SUBVARIETIES OF A TORUS
    Amoroso, Francesco
    Viada, Evelina
    DUKE MATHEMATICAL JOURNAL, 2009, 150 (03) : 407 - 442
  • [8] Compactifications of subvarieties of tori
    Tevelev, Jenia
    AMERICAN JOURNAL OF MATHEMATICS, 2007, 129 (04) : 1087 - 1104
  • [9] Rational points on Grassmannians and unlikely intersections in tori
    Capuano, L.
    Masser, D.
    Pila, J.
    Zannier, U.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 141 - 154
  • [10] THEOREMS ON TANGENTS TO SUBVARIETIES OF COMPLEX TORI
    ZAK, FL
    MATHEMATICAL NOTES, 1988, 43 (3-4) : 219 - 225