A semi-Markov model for binary longitudinal responses subject to misclassification

被引:8
|
作者
Rosychuk, RJ [1 ]
Thompson, ME [1 ]
机构
[1] Univ Alberta, Dept Pediat, Edmonton, AB T6G 2J3, Canada
关键词
alternating renewal process; longitudinal data; minimum chi-square estimation; misclassification; semi-Markov process;
D O I
10.2307/3316036
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors propose a two-state continuous-time semi-Markov model for an unobservable alternating binary process. Another process is observed at discrete time points that may misclassify the true state of the process of interest. To estimate the model's parameters, the authors propose a minimum Pearson chi-square type estimating approach based on approximated joint probabilities when the true process is in equilibrium. Three consecutive observations are required to have sufficient degrees of freedom to perform estimation. The methodology is demonstrated on parasitic infection data with exponential and gamma sojourn time distributions.
引用
收藏
页码:395 / 404
页数:10
相关论文
共 50 条
  • [1] THE ASSOCIATION IN TIME OF A BINARY SEMI-MARKOV PROCESS
    DHARMADHIKARI, AD
    KUBER, MM
    [J]. STATISTICS & PROBABILITY LETTERS, 1992, 14 (05) : 343 - 348
  • [2] A Semi-Markov Inventory Control Model
    Knopov P.S.
    Pepelyaeva T.V.
    Demchenko I.Y.
    [J]. Cybernetics and Systems Analysis, 2016, 52 (5) : 730 - 736
  • [3] A semi-Markov model of a manpower system
    Yadavalli, VSS
    Natarajan, R
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2001, 19 (06) : 1077 - 1086
  • [4] A semi-Markov model in biomedical studies
    Ruiz-Castro, JE
    Pérez-Ocón, R
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (03) : 437 - 455
  • [5] Estimation in a Semi-Markov Transformation Model
    Dabrowska, Dorota M.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (01):
  • [6] SEMI-MARKOV MODEL FOR CLINICAL TRIALS
    WEISS, GH
    ZELEN, M
    [J]. BIOMETRICS, 1964, 20 (02) : 397 - &
  • [7] SEMI-MARKOV MODEL AND ITS APPLICATION
    JAIN, RK
    [J]. BIOMETRICAL JOURNAL, 1987, 29 (04) : 439 - 443
  • [8] Semi-Markov Model of Damage Process
    Grabski, Franciszek
    [J]. DEPENDABILITY ENGINEERING AND COMPLEX SYSTEMS, 2016, 470 : 207 - 217
  • [9] A semi-Markov model for price returns
    D'Amico, Guglielmo
    Petroni, Filippo
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (20) : 4867 - 4876
  • [10] A Semi-Markov Fire Growth Model
    Veeramany, Arun
    Weckman, Elizabeth J.
    Pandey, Mahesh D.
    [J]. FIRE TECHNOLOGY, 2014, 50 (02) : 437 - 454