High temperature ablation-oxidation performance of SiC nanowhisker toughened-SiC/ZrB2-SiC ultra-high temperature multilayer coatings under supersonic flame

被引:32
|
作者
Abdollahi, Alireza [1 ]
Ehsani, Naser [2 ]
Valefi, Zia [1 ]
机构
[1] Malek Ashtar Univ Technol, Metall Mat Res Ctr, POB 15875-1774, Tehran, Iran
[2] Malek Ashtar Univ Technol, Composite Res Ctr, POB 15875-1774, Tehran, Iran
关键词
Ablation; Supersonic flame; Coating; Nanowhisker; SiC; ZrB2; CARBON/CARBON COMPOSITES; PACK CEMENTATION; BEHAVIOR; GRADIENT; RESISTANCE; MICROSTRUCTURE; FABRICATION; MECHANISM; GRAPHITE; LAYER;
D O I
10.1016/j.jallcom.2018.02.234
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ablation behavior of SiC nanowhisker toughened-SiC/ZrB2-SiC ultra-high temperature multilayer coatings was evaluated under supersonic flame at similar to 2173 K for 120s. SiC nanowhisker toughened-SiC/ZrB2-SiC coatings were prepared on graphite substrate by two-step reactive melt infiltration (RMI) method. The ZrB2-SiC outer coating was prepared on the SiC coated graphite surface by in-situ and ex-situ methods. In ex-situ processing, ZrB2 powder was directly introduced into the powder mixture as a raw material. In in-situ processing, ZrB2 phase was formed in the coating by in-situ reaction between ZrO2 and B2O3. The linear and mass ablation rates for the in-situ ZrB2-SiC coating after 120s ablation under supersonic flame were 1.75 mms(-1) and 0.083 x 10(-3) g cm(-2) s(-1) respectively. For the ex-situ ZrB2-SiC coating the linear and mass ablation rates were 1.5 mms(-1) and 0.064 x 10(-3) g cm(-2) s(-1). The results showed that, the ablation resistance of in-situ ZrB2-SiC coating is very close to ex-situ ZrB2-SiC coating which can provide stable protection for the carbon substrate. Moreover, The SiC nanowhisker network structure in both in-situ ans ex-situ ZrB2-SiC coatings not only improved the toughness of the protective film by crack bridging, crack deflection and crack impedance, but also enhanced the bonding ability of protective film by the pinning and framework effects. (c) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:798 / 809
页数:12
相关论文
共 50 条
  • [1] Ablation Properties of ZrB2-SiC Ultra-high Temperature Ceramic Coatings
    Zhou Hai-Jun
    Zhang Xiang-Yu
    Gao Le
    Hu Jian-Bao
    Wu Bin
    Dong Shao-Ming
    JOURNAL OF INORGANIC MATERIALS, 2013, 28 (03) : 256 - 260
  • [2] Dynamic oxidation of ultra-high temperature ZrB2-SiC under high enthalpy supersonic flows
    Monteverde, Frederic
    Savino, Raffaele
    Fumo, Mario De Stefano
    CORROSION SCIENCE, 2011, 53 (03) : 922 - 929
  • [3] Ablation mechanism of ZrB2-SiC and Csf/ZrB2-SiC ultra-high temperature ceramic composites
    Yang Fei-Yu
    Zhang Xing-Hong
    Han Jie-Cai
    Du Shan-Yi
    JOURNAL OF INORGANIC MATERIALS, 2008, 23 (04) : 734 - 738
  • [4] Oxidation of ZrB2-SiC ultra-high temperature composites over a wide range of SiC content
    Williams, Peter A.
    Sakidja, Ridwan
    Perepezko, John H.
    Ritt, Patrick
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (14) : 3875 - 3883
  • [5] Pressureless sintering of ultra-high temperature ZrB2-SiC ceramics
    Cheng, Zhi-Qiang
    Zhou, Chang-Ling
    Tian, Ting-Yan
    Sun, Cheng-Gong
    Shi, Zhi-Hong
    Fan, Jie
    HIGH-PERFORMANCE CERAMICS V, PTS 1 AND 2, 2008, 368-372 : 1746 - +
  • [6] Effect of sintering temperature on densification of ultra-high temperature ceramic ZrB2-SiC
    Cao, Jianling
    Xu, Qiang
    Zhu, Shizhen
    Wang, Fuchi
    Zhao, Junfeng
    Ni, Chuanhao
    Feng, Chao
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2007, 36 (SUPPL. 2): : 171 - 173
  • [7] Effect of sintering temperature on densification of ultra-high temperature ceramic ZrB2-SiC
    Cao Jianling
    Xu Qiang
    Zhu Shizhen
    Wang Fuchi
    Zhao Junfeng
    Ni Chuanhao
    Feng Chao
    RARE METAL MATERIALS AND ENGINEERING, 2007, 36 : 171 - 173
  • [8] Influence of SiC Particle Size on Mechanical Properties of ZrB2-SiC Ultra-high Temperature Ceramics
    Peng Aiyi
    Li Junguo
    Shen Qiang
    Zhang Lianmeng
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 : 426 - 429
  • [9] Ultra High Temperature Oxidation Behavior of ZrB2-SiC Ceramics in Air
    Oguri, Kazuyuki
    Sekigawa, Takahiro
    Kamita, Tohru
    JOURNAL OF THE JAPAN INSTITUTE OF METALS, 2011, 75 (04) : 207 - 212
  • [10] Preparation and flame ablation/oxidation behavior of ZrB2/SiC ultra-high temperature ceramic composites
    Wang, Chang-An
    Wang, Hailong
    Huang, Yong
    Fang, Daining
    COMPOSITE MATERIALS V, 2007, 351 : 142 - +