Hard-constrained inconsistent signal feasibility problems

被引:61
|
作者
Combettes, PL [1 ]
Bondon, P
机构
[1] CUNY City Coll, Dept Elect Engn, New York, NY 10031 USA
[2] CUNY, Grad Sch, New York, NY 10031 USA
[3] CNRS, Signaux & Syst Lab, Gif Sur Yvette, France
基金
美国国家科学基金会;
关键词
convex feasibility problem; fixed point; Hilbert space; inconsistent constraints; monotone operator; optimization; signal synthesis;
D O I
10.1109/78.782189
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the problem of synthesizing feasible signals in a Hilbert space in the presence of inconsistent convex constraints, some of which must imperatively be satisfied. This problem is formalized as that of minimizing a convex objective measuring the amount of violation of the soft constraints over the intersection of the sets associated with the hard ones. The resulting convex optimization problem is analyzed, and numerical solution schemes are presented along with convergence results. The proposed formalism and its algorithmic framework unify and extend existing approaches to inconsistent signal feasibility problems. An application to signal synthesis is demonstrated.
引用
收藏
页码:2460 / 2468
页数:9
相关论文
共 50 条
  • [1] Hard-constrained signal feasibility problems
    Combettes, PL
    Bondon, P
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 2569 - 2572
  • [2] Constrained parallel projection methods for optimal signal estimation and design - Constrained inconsistent signal feasibility problems
    Yamada, I
    Ogura, N
    Goto, A
    Sakaniwa, K
    [J]. INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL III, 1996, : 69 - 72
  • [3] Hard-constrained versus soft-constrained parameter estimation
    Benavoli, A.
    Chisci, L.
    Farina, A.
    Ortenzi, L.
    Zappa, G.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2006, 42 (04) : 1224 - 1239
  • [4] Hard-Constrained Deep Learning for Climate Downscaling
    Harder, Paula
    Hernandez-Garcia, Alex
    Ramesh, Venkatesh
    Yang, Qidong
    Sattegeri, Prasanna
    Szwarcman, Daniela
    Watson, Campbell D.
    Rolnick, David
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [5] Learning Hard-Constrained Models with One Sample
    Galanis, Andreas
    Kalavasis, Alkis
    Kandiros, Anthimos Vardis
    [J]. PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 3184 - 3196
  • [6] Hard-Constrained Hopfield Neural Network for Subpixel Mapping
    Zhang, Chengyuan
    Wang, Qunming
    Atkinson, Peter M.
    [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62
  • [7] Hard-constrained neural networks for modeling nonlinear acoustics
    Ozan, Defne E.
    Magri, Luca
    [J]. Physical Review Fluids, 2023, 8 (10)
  • [8] MDM: Meta diffusion model for hard-constrained text generation
    Ke, Wenjun
    Guo, Yikai
    Liu, Qi
    Chen, Wanyi
    Wang, Peng
    Luo, Haoran
    Luo, Zhizhao
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [9] Latent Variables Improve Hard-Constrained Controllable Text Generation on Weak Correlation
    Zhu, Weigang
    Liu, Xiaoming
    Yang, Guan
    Liu, Jie
    Qi, Haotian
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 365 - 374
  • [10] INCONSISTENT SIGNAL FEASIBILITY PROBLEMS - LEAST-SQUARES SOLUTIONS IN A PRODUCT SPACE
    COMBETTES, PL
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) : 2955 - 2966