Low-cost Multi-spectral Face Imaging For Robust Face Recognition

被引:0
|
作者
Vetrekar, N. T. [2 ]
Raghavendra, R. [1 ]
Gad, R. S. [2 ]
机构
[1] NTNU, Norwegian Biometr Lab, Gjovik, Norway
[2] Goa Univ, Dept Elect, Taleigao Plateau, India
关键词
FUSION; REPRESENTATION; IMAGES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-spectral face recognition has acquired significant attention over a last few decades due to its potential of capturing spatial and spectral information across the electromagnetic spectrum. In this paper, we present a new imaging scheme that can obtain the multi-spectral face image at nine different spectra covering 530nm-1000nm. We prepared a new database comprising of 230 subjects using our new low-cost multi-spectral face imaging device. Extensive experiments are presented for evaluating the performance of the four different state-of-the-art face recognition algorithms on both individual bands and the fused spectral face image. Obtained results show the improved face recognition performance of Log-Gabor features with Collaborative Representation (CRC) as the classifier.
引用
收藏
页码:324 / 329
页数:6
相关论文
共 50 条
  • [1] Multi-spectral Face Recognition System
    Ahmed, H.
    Umair, M.
    Murtaza, A.
    Bajwa, U. I.
    Vardasca, R.
    [J]. VIPIMAGE 2017, 2018, 27 : 983 - 997
  • [2] Multi-Spectral Information regarding Face Recognition
    Ticay-Rivas, Jaime R.
    del Pozo-Banos, Marcos
    Travieso, Carlos M.
    Alonso, Jesus B.
    Ferrer, Miguel A.
    [J]. 2011 IEEE INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST), 2011,
  • [3] Multi-spectral low-rank structured dictionary learning for face recognition
    Jing, Xiao-Yuan
    Wu, Fei
    Zhu, Xiaoke
    Dong, Xiwei
    Ma, Fei
    Li, Zhiqiang
    [J]. PATTERN RECOGNITION, 2016, 59 : 14 - 25
  • [4] Collaborative Representation of Grassmann Manifold Projection Metric for Robust Multi-spectral Face Recognition
    Vetrekar, Narayan
    Raja, Kiran B.
    Raghavendra, R.
    Gad, R. S.
    Busch, Christoph
    [J]. SIN'17: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON SECURITY OF INFORMATION AND NETWORKS, 2017, : 117 - 124
  • [5] Exploring Convolutional Neural Network for Multi-spectral Face Recognition
    Prabhu, Anish K.
    Vetrekar, Narayan
    Gad, R. S.
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2019, PT I, 2019, 11941 : 606 - 613
  • [6] Detecting Disguise Attacks on Multi-spectral Face Recognition Through Spectral Signatures
    Raghavendra, R.
    Vetrekar, Narayan
    Raja, Kiran B.
    Gad, R. S.
    Busch, Christoph
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3371 - 3377
  • [7] A low-cost IoT multi-spectral acquisition device
    Botero-Valencia, J. S.
    Valencia-Aguirre, J.
    Durmus, D.
    [J]. HARDWAREX, 2021, 9
  • [8] Hierarchical fusion of multi-spectral face images for improved recognition performance
    Singh, Richa
    Vatsa, Mayank
    Noore, Afzel
    [J]. INFORMATION FUSION, 2008, 9 (02) : 200 - 210
  • [9] DEVELOPMENT OF LOW-COST MULTI-SPECTRAL CAMERAS FOR PRECISION AGRICULTURE
    Perez-Garcia, Ambar
    Rodriguez-Molina, Adrian
    Hernandez, Emma
    Vera, Luis
    Lopez, Jose Fco
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3466 - 3469
  • [10] Algorithms for chemical detection with a low-cost multi-spectral sensor
    Lewin, GC
    Holland, SK
    Laufer, G
    [J]. Sensors, and Command, Control, Communications, and Intelligence (C31) Technologies for Homeland Security and Homeland Defense IV, Pts 1 and 2, 2005, 5778 : 393 - 402