Form factor approach to dynamical correlation functions in critical models

被引:87
|
作者
Kitanine, N. [1 ]
Kozlowski, K. K. [1 ]
Maillet, J. M. [2 ]
Slavnov, N. A. [3 ]
Terras, V. [2 ]
机构
[1] Univ Bourgogne, CNRS, UMR 5584, IMB, Paris, France
[2] ENS Lyon, CNRS, UMR 5672, Lab Phys, Lyon, France
[3] Steklov Math Inst, Moscow, Russia
关键词
correlation functions; correlation functions (theory); critical exponents and amplitudes (theory); quantum gases; SPIN CORRELATION-FUNCTIONS; INTERACTING BOSE-GAS; CONFORMAL-INVARIANCE; DIMENSIONAL SYSTEMS; IMPENETRABLE BOSONS; OPERATOR CONTENT; XY MODEL; CHAIN; FIELD; TIME;
D O I
10.1088/1742-5468/2012/09/P09001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We develop a form factor approach to the study of dynamical correlation functions of quantum integrable models in the critical regime. As an example, we consider the quantum non-linear Schrodinger model. We derive the long-distance/long-time asymptotic behavior of various two-point functions of this model. We also compute edge exponents and amplitudes characterizing the power-law behavior of dynamical response functions on the particle-hole excitation thresholds. These last results con firm predictions based on the non-linear Luttinger liquid method. Our results rely on a first principles derivation, based on a microscopic analysis of the model, without invoking, at any stage, any correspondence with a continuous field theory. Furthermore, our approach only makes use of certain general properties of the model, so that it should be applicable, possibly with minor modi fications, to a wide class of (not necessarily integrable) gapless one-dimensional Hamiltonians.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] A form factor approach to the asymptotic behavior of correlation functions in critical models
    Kitanine, N.
    Kozlowski, K. K.
    Maillet, J. M.
    Slavnov, N. A.
    Terras, V.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [2] Thermal form-factor approach to dynamical correlation functions of integrable lattice models
    Goehmann, Frank
    Karbach, Michael
    Kluemper, Andreas
    Kozlowski, Karol K.
    Suzuki, Junji
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [3] Correlation functions and the dynamical structure factor of quasicrystals
    M. Hohl
    J. Roth
    H.-R. Trebin
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 17 : 595 - 601
  • [4] Correlation functions and the dynamical structure factor of quasicrystals
    Hohl, M
    Roth, J
    Trebin, HR
    EUROPEAN PHYSICAL JOURNAL B, 2000, 17 (04): : 595 - 601
  • [5] Estimating dynamical models using generalized correlation functions
    Kadtke, J
    Kremliovsky, M
    PHYSICS LETTERS A, 1999, 260 (3-4) : 203 - 208
  • [6] Estimating dynamical models using generalized correlation functions
    Marine Physical Laboratory, University of California, San Diego, San Diego, CA 92093-0238, United States
    不详
    Phys Lett Sect A Gen At Solid State Phys, 3-4 (203-208):
  • [7] A form-factor approach to finite-temperature correlation functions in c=1 CFT
    Peysson, S
    Schoutens, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (30): : 6471 - 6488
  • [8] CUMULANT APPROACH TO DYNAMICAL CORRELATION-FUNCTIONS AT FINITE TEMPERATURES
    MINHTIEN, T
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 95 (04): : 515 - 518
  • [9] On the thermodynamic limit of form factor expansions of dynamical correlation functions in the massless regime of the XXZ spin 1/2 chain
    Kozlowski, Karol K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (09)
  • [10] Is there a missing factor? A canonical correlation approach to factor models
    Ahn, Seung C.
    Dieckmann, Stephan
    Perez, M. Fabricio
    REVIEW OF FINANCIAL ECONOMICS, 2018, 36 (04) : 321 - 347