A numerical tool for the design of assembled structures under dynamic loads

被引:48
|
作者
Festjens, Hugo [1 ]
Chevallier, Gael [1 ]
Dion, Jean-luc [1 ]
机构
[1] Lismma Supmeca, EA 2336, F-93400 St Ouen, France
关键词
Assembled structure; Micro-slip; Frictional interface; Joint; Finite element; Model order reduction; MICRO-SLIP; CONTACT; DISSIPATION;
D O I
10.1016/j.ijmecsci.2013.06.013
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Mechanical joints in assembled structures cause energy dissipation due to micro-slip in contact and softening effects that play an important role in the dynamic behavior of such structures. The contact non-linearity is governed by micro and meso-scale parameters (geometry, roughness, local pressure, etc.) and as a result cannot be included in a macro-size model of a whole structure because of the computational cost. The present paper investigates the idea of using the normal modes of the linearized structure as boundary conditions on a detailed model reduced to the joints only. Since contact non-linearities alter mode shapes, they are corrected as vibrational energy increases. The method relies on a corrected quasi-static formulation associated with the Masing hypothesis. These assumptions circumvent considerable numerical expense due to the non-linear dynamics. The formulation of the method is detailed and investigated on a lap-joint benchmark. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 50 条
  • [1] Topological design of structures under dynamic periodic loads
    Liu, Baoshou
    Huang, Xiaodong
    Huang, Changfu
    Sun, Guangyong
    Yan, Xiaolei
    Li, Guangyao
    [J]. ENGINEERING STRUCTURES, 2017, 142 : 128 - 136
  • [2] COMPUTER AUTOMATED DESIGN OF STRUCTURES UNDER DYNAMIC LOADS
    KRAMER, GJE
    GRIERSON, DE
    [J]. COMPUTERS & STRUCTURES, 1989, 32 (02) : 313 - 325
  • [3] Optimal topology design of structures under dynamic loads
    S. Min
    N. Kikuchi
    Y. C. Park
    S. Kim
    S. Chang
    [J]. Structural optimization, 1999, 17 : 208 - 218
  • [4] Optimal topology design of structures under dynamic loads
    Min, S
    Kikuchi, N
    Park, YC
    Kim, S
    Chang, S
    [J]. STRUCTURAL OPTIMIZATION, 1999, 17 (2-3) : 208 - 218
  • [5] SFTs under dynamic loads: new design issues and numerical simulation
    Perotti, F.
    Foti, F.
    Martinelli, L.
    Tomasin, M.
    [J]. MAINTENANCE, SAFETY, RISK, MANAGEMENT AND LIFE-CYCLE PERFORMANCE OF BRIDGES, 2018, : 885 - 892
  • [6] Dynamic Design of Compound Shell Structures of Revolution Under Nonstationary Loads*
    Lugovoi, P. Z.
    Meish, V. F.
    Meish, Yu. A.
    Orlenko, S. P.
    [J]. INTERNATIONAL APPLIED MECHANICS, 2020, 56 (01) : 22 - 32
  • [7] Dynamic Design of Compound Shell Structures of Revolution Under Nonstationary Loads*
    Lugovoi, P.Z.
    Meish, V.F.
    Meish, Yu. A.
    Orlenko, S.P.
    [J]. Lugovoi, P.Z. (plugovyy@inmech.kiev.ua), 1600, Springer (56): : 22 - 32
  • [8] Dynamic Design of Compound Shell Structures of Revolution Under Nonstationary Loads*
    P. Z. Lugovoi
    V. F. Meish
    Yu. A. Meish
    S. P. Orlenko
    [J]. International Applied Mechanics, 2020, 56 : 22 - 32
  • [9] A numerical investigation on the dynamic response of stiffened plated structures under moving loads
    Sahoo, Prakash Ranjan
    Barik, Manoranjan
    [J]. STRUCTURES, 2020, 28 : 1675 - 1686
  • [10] Optimal design of structures subjected to dynamic loads
    Arora, JS
    [J]. OPTIMAL PERFORMANCE OF CIVIL INFRASTRUCTURE SYSTEMS, 1998, : 17 - 32