A Cooperative Multi-population Approach to Clustering Temporal Data

被引:0
|
作者
Georgieva, Kristina [1 ]
Engelbrecht, Andries P. [1 ]
机构
[1] Univ Pretoria, Dept Comp Sci, CIRG, ZA-0002 Pretoria, South Africa
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In temporal environments, population-based data clustering algorithms suffer when changes in the data occur during the clustering process. Diversity of the population is lost and memory of the individuals of the population is outdated, making the clusters found before the change non-optimal. This paper proposes a new particle swarm optimisation alternative to clustering temporal data. It combines the dynamic properties of the multi-swarm particle swarm optimisation algorithm with the multi-objective properties of the cooperative particle swarm optimisation algorithm. The proposed alternative is compared to various existing data clustering algorithms which are shortly described in the paper and the results are discussed, including a comparison of four performance measures relevant to the clustering of data.
引用
收藏
页码:1983 / 1991
页数:9
相关论文
共 50 条
  • [1] Multi-population Black Hole Algorithm for the problem of data clustering
    Salih, Sinan A.
    Alsewari, AbdulRahman
    Wahab, H. A. S.
    Mohammed, Mustafa K. A.
    Rashid, Tarik
    Das, Debashish
    Basurra, Shadi
    [J]. PLOS ONE, 2023, 18 (07):
  • [2] Multi-population Cooperative Cultural Algorithms
    Guo, Yi-nan
    Liu, Dandan
    Cheng, Jian
    [J]. BIO-INSPIRED COMPUTING AND APPLICATIONS, 2012, 6840 : 199 - 206
  • [3] Multi-population cooperative particle swarm optimization
    Niu, B
    Zhu, YL
    He, XX
    [J]. ADVANCES IN ARTIFICAL LIFE, PROCEEDINGS, 2005, 3630 : 874 - 883
  • [4] A Multilevel Cooperative Multi-Population Cultural Algorithm
    Singh, Dilpreet
    Zadeh, Pooya Moradian
    Kobti, Ziad
    [J]. 2018 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), 2018,
  • [5] A Multi-population BRKGA for the Automatic Clustering Problem
    Lima, Alexandre
    Lima, Alfredo
    Nogueira, Bruno
    Santos, Mario
    Pinheiro, Rian G. S.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 368 - 373
  • [6] A Hierarchical Clustering-based Cooperative Multi-population Many-objective Optimization Algorithm
    Yang, Na
    Zhang, Quan
    Wu, Ying
    Ge, Yisu
    Tang, Zhenzhou
    [J]. PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 795 - 803
  • [7] A Novel Cooperative Parallel Multi-Population Optimization Algorithm
    Verma, Nimish
    Zadeh, Pooya Moradian
    Kobti, Ziad
    [J]. PROCEEDINGS OF 2022 THE 3RD EUROPEAN SYMPOSIUM ON SOFTWARE ENGINEERING, ESSE 2022, 2022, : 104 - 111
  • [8] Cooperative DynDE for Temporal Data Clustering
    Georgieva, Kristina S.
    Engelbrecht, Andries P.
    [J]. 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 437 - 444
  • [9] Improved differential evolution algorithm based on cooperative multi-population
    Shen, Yangyang
    Wu, Jing
    Ma, Minfu
    Du, Xiaofeng
    Wu, Hao
    Fei, Xianlong
    Niu, Datian
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [10] Multi-Population Mortality Model: A Practical Approach
    Nor, Siti Rohani Mohd
    Yusof, Fadhilah
    Bahar, Arifah
    [J]. SAINS MALAYSIANA, 2018, 47 (06): : 1337 - 1347