Recursive and Combinational Formulas for Permanents of General k-tridiagonal Toeplitz Matrices

被引:6
|
作者
Kucuk, Ahmet Zahid [1 ]
Ozen, Mehmet [1 ]
Ince, Halit [1 ]
机构
[1] Sakarya Univ, Dept Math, Serdivan Sakarya, Turkey
关键词
Permanent; k-tridiagonal matrix; Toeplitz matrix; Recurrence relation; DETERMINANTS; FIBONACCI;
D O I
10.2298/FIL1901307K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study presents recursive relations on the permanents of k - tridiagonal Toeplitz matrices which are obtained by the reduction of the matrices to the other matrices whose permanents are easily calculated. These recursive relations are achieved by writing the permanents with bandwidth k in terms of the permanents with a bandwith smaller than k. Based on these recursive relations, an algorithm is given to calculate the permanents of k - tridiagonal Toeplitz matrices. Furthermore, explicit combinational formulas, which are obtained using these recurrences, for the permanents are also presented.
引用
收藏
页码:307 / 317
页数:11
相关论文
共 27 条
  • [1] ON DETERMINANTS AND PERMANENTS OF k-TRIDIAGONAL TOEPLITZ MATRICES
    Asci, Mustafa
    Tasci, Dursun
    El-Mikkawy, Moawwad
    UTILITAS MATHEMATICA, 2012, 89 : 97 - 106
  • [2] A new recursive algorithm for inverting general k-tridiagonal matrices
    El-Mikkawy, Moawwad
    Atlan, Faiz
    APPLIED MATHEMATICS LETTERS, 2015, 44 : 34 - 39
  • [3] Inversion of k-tridiagonal matrices with Toeplitz structure
    Jia, Jiteng
    Sogabe, Tomohiro
    El-Mikkawy, Moawwad
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (01) : 116 - 125
  • [4] Explicit formula for positive integer powers of k-tridiagonal Toeplitz matrices
    Ji-Teng Jia
    Jie Wang
    Qi He
    Yu-Cong Yan
    Fatih Yılmaz
    Journal of Applied Mathematics and Computing, 2023, 69 : 811 - 822
  • [5] Explicit formula for positive integer powers of k-tridiagonal Toeplitz matrices
    Jia, Ji-Teng
    Wang, Jie
    He, Qi
    Yan, Yu-Cong
    Yilmaz, Fatih
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (01) : 811 - 822
  • [6] On decomposition of k-tridiagonal l-Toeplitz matrices and its applications
    Ohashi, A.
    Sogabe, T.
    Usuda, T. S.
    SPECIAL MATRICES, 2015, 3 (01): : 200 - 206
  • [7] Symbolic algorithms for the inverses of general k-tridiagonal matrices
    Jia, Jiteng
    Li, Sumei
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (12) : 3032 - 3042
  • [8] Symbolic Algorithm for Inverting General k-Tridiagonal Interval Matrices
    Thirupathi, Sivakumar
    Thamaraiselvan, Nirmala
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2023, 21
  • [9] A note on a fast breakdown-free algorithm for computing the determinants and the permanents of k-tridiagonal matrices
    Sogabe, Tomohiro
    Yilmaz, Fatih
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 98 - 102
  • [10] NINETY YEARS OF k-TRIDIAGONAL MATRICES
    da Fonseca, Carlos M.
    Kowalenko, Victor
    Losonczi, Laszlo
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2020, 57 (03) : 298 - 311