Minimaxity in predictive density estimation with parametric constraints

被引:14
|
作者
Kubokawa, Tatsuya [1 ]
Marchand, Eric [2 ]
Strawderman, William E. [3 ]
Turcotte, Jean-Philippe [2 ]
机构
[1] Univ Tokyo, Dept Econ, Bunkyo Ku, Tokyo 1130033, Japan
[2] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[3] Rutgers State Univ, Dept Stat & Biostat, Piscataway, NJ 08854 USA
基金
日本学术振兴会; 加拿大自然科学与工程研究理事会;
关键词
Bayes estimators; Decision theory; Dominance; Kullback-Leibler loss; Invariance; Location family; Location-scale family; Minimaxity; Order restriction; Predictive density; Restricted parameter space; Scale family; RISK EQUIVARIANT ESTIMATOR; SHRINKAGE ESTIMATION; LOCATION PARAMETER; FIDUCIAL THEORY;
D O I
10.1016/j.jmva.2013.01.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with estimation of a predictive density with parametric constraints under Kullback-Leibler loss. When an invariance structure is embedded in the problem, general and unified conditions for the minimaxity of the best equivariant predictive density estimator are derived. These conditions are applied to check minimaxity in various restricted parameter spaces in location and/or scale families. Further, it is shown that the generalized Bayes estimator against the uniform prior over the restricted space is minimax and dominates the best equivariant estimator in a location family. when the parameter is restricted to an interval of the form [a(0), infinity). Similar findings are obtained for scale parameter families. Finally, the presentation is accompanied by various observations and illustrations, such as normal, exponential location, and gamma model examples. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:382 / 397
页数:16
相关论文
共 50 条
  • [1] On improved predictive density estimation with parametric constraints
    Fourdrinier, Dominique
    Marchand, Eric
    Righi, Ali
    Strawderman, William E.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 172 - 191
  • [2] On predictive density estimation for Gamma models with parametric constraints
    L'Moudden, Aziz
    Marchand, Eric
    Kortbi, Othmane
    Strawderman, William E.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 185 : 56 - 68
  • [3] Bayesian predictive density estimation with parametric constraints for the exponential distribution with unknown location
    Yasuyuki Hamura
    Tatsuya Kubokawa
    [J]. Metrika, 2022, 85 : 515 - 536
  • [4] Bayesian predictive density estimation with parametric constraints for the exponential distribution with unknown location
    Hamura, Yasuyuki
    Kubokawa, Tatsuya
    [J]. METRIKA, 2022, 85 (04) : 515 - 536
  • [5] Estimation of the global mode of a density: Minimaxity, adaptation, and computational complexity
    Arias-Castro, Ery
    Qiao, Wanli
    Zheng, Lin
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 2774 - 2795
  • [6] Asymptotic minimax risk of predictive density estimation for non-parametric regression
    Xu, Xinyi
    Liang, Feng
    [J]. BERNOULLI, 2010, 16 (02) : 543 - 560
  • [7] ON PARAMETRIC DENSITY-ESTIMATION
    ELSAYYAD, GM
    SAMIUDDIN, M
    ALHARBEY, AA
    [J]. BIOMETRIKA, 1989, 76 (02) : 343 - 348
  • [8] A PARAMETRIC ESTIMATION OF WEIBULL DENSITY
    Abdelfattah, Ezz H.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2008, 10 (01) : 131 - 147
  • [9] Density estimation under constraints
    Hall, P
    Presnell, B
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (02) : 259 - 277
  • [10] LOWER BOUNDS FOR PARAMETRIC-ESTIMATION WITH CONSTRAINTS
    GORMAN, JD
    HERO, AO
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) : 1285 - 1301