Population Genetic Structure of Aedes (Stegomyia) aegypti (L.) at a Micro-Spatial Scale in Thailand: Implications for a Dengue Suppression Strategy

被引:45
|
作者
Olanratmanee, Phanthip [1 ,2 ]
Kittayapong, Pattamaporn [1 ,2 ]
Chansang, Chitti [3 ]
Hoffmann, Ary A. [4 ]
Weeks, Andrew R. [4 ]
Endersby, Nancy M. [4 ]
机构
[1] Mahidol Univ, Fac Sci, Ctr Excellence Vectors & Vector Borne Dis, Salaya, Nakhon Pathom, Thailand
[2] Mahidol Univ, Fac Sci, Dept Biol, Bangkok 10700, Thailand
[3] Minist Publ Hlth, Dept Med Sci, Natl Inst Hlth, Nonthaburi, Thailand
[4] Univ Melbourne, Dept Genet, Bio Inst 21, Pest & Dis Vector Control Grp, Melbourne, Vic 3010, Australia
来源
PLOS NEGLECTED TROPICAL DISEASES | 2013年 / 7卷 / 01期
基金
美国国家卫生研究院;
关键词
YELLOW-FEVER MOSQUITO; F-STATISTICS; MICROSATELLITE; WOLBACHIA; SIZE; FLOW;
D O I
10.1371/journal.pntd.0001913
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background: The genetic population structure of Aedes (Stegomyia) aegypti (L.), the main vector of dengue virus, is being investigated in areas where a novel dengue suppression program is to be implemented. The aim of the program is to release and establish mosquito populations with impaired virus transmission capabilities. To model effects of the release and devise protocols for its implementation, information about the genetic structure of populations at a range of spatial scales is required. Methodology/Principal Findings: This study investigates a potential release site in the Hua Sam Rong Subdistrict of Plaeng Yao District, Chachoengsao Province, in eastern Thailand which comprises a complex of five villages within a 10 km radius. Aedes aegypti resting indoors was sampled at four different times of year from houses within the five villages. Genetic markers were used to screen the mosquitoes: two Exon Primed Intron Crossing (EPIC) markers and five microsatellite markers. The raw allele size was determined using several statistical software packages to analyze the population structure of the mosquito. Estimates of effective population size for each village were low, but there was no evidence of genetic isolation by geographic distance. Conclusions: The presence of temporary genetic structure is possibly caused by genetic drift due to large contributions of adults from a few breeding containers. This suggests that the introduction of mosquitoes into an area needs to proceed through multiple releases and targeting of sites where mosquitoes are emerging in large numbers.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Spatial and temporal patterns of abundance of Aedes aegypti L. (Stegomyia aegypti) and Aedes albopictus (Skuse) [Stegomyia albopictus (Skuse)] in southern Florida
    Reiskind, M. H.
    Lounibos, L. P.
    MEDICAL AND VETERINARY ENTOMOLOGY, 2013, 27 (04) : 421 - 429
  • [2] Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela
    Herrera, Flor
    Urdaneta, Ludmel
    Rivero, Jose
    Zoghbi, Normig
    Ruiz, Johanny
    Carrasquel, Gabriela
    Antonio Martinez, Jose
    Pernalete, Martha
    Villegas, Patricia
    Montoya, Ana
    Rubio-Palis, Yasmin
    Rojas, Elina
    MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2006, 101 (06): : 625 - 633
  • [3] Ovitrap surveillance of the dengue vectors, Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus Skuse in selected areas in Bentong, Pahang, Malaysia
    Norzahira, R.
    Hidayatulfathi, O.
    Wong, H. M.
    Cheryl, A.
    Firdaus, R.
    Chew, H. S.
    Lim, K. W.
    Sing, K. W.
    Mahathavan, M.
    Nazni, W. A.
    Lee, H. L.
    Vasan, S. S.
    McKemey, A.
    Lacroix, R.
    TROPICAL BIOMEDICINE, 2011, 28 (01) : 48 - 54
  • [4] Population genetic structure of Aedes aegypti, the principal vector of dengue viruses
    Urdaneta-Marquez, Ludmel
    Failloux, Anna-Bella
    INFECTION GENETICS AND EVOLUTION, 2011, 11 (02) : 253 - 261
  • [5] Assessment of a new strategy, based on Aedes aegypti (L.) pupal productivity, for the surveillance and control of dengue transmission in Thailand
    Barbazan, P.
    Tuntaprasartt, W.
    Souris, M.
    Demoraes, F.
    Nitatpattanat, N.
    Boonyuan, W.
    Gonzalez, J. -P.
    ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY, 2008, 102 (02): : 161 - 171
  • [6] Genetic structure of Aedes aegypti populations in Chiang Mai (Thailand) and relation with dengue transmission
    Mousson, L
    Vazeille, M
    Chawprom, S
    Prajakwong, S
    Rodhain, F
    Failloux, AB
    TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2002, 7 (10) : 865 - 872
  • [7] The influence of roads on the fine-scale population genetic structure of the dengue vector Aedes aegypti (Linnaeus)
    Regilme, Maria Angenica F.
    Carvajal, Thaddeus M.
    Honnen, Ann-Christin
    Amalin, Divina M.
    Watanabe, Kozo
    PLOS NEGLECTED TROPICAL DISEASES, 2021, 15 (02): : 1 - 14
  • [8] Fine-scale population genetic structure of dengue mosquito vector, Aedes aegypti, in Metropolitan Manila, Philippines
    Carvajal, Thaddeus M.
    Ogishi, Kohei
    Yaegeshi, Sakiko
    Hernandez, Lara Fides T.
    Viacrusis, Katherine M.
    Ho, Howell T.
    Amalin, Divina M.
    Watanabe, Kozo
    PLOS NEGLECTED TROPICAL DISEASES, 2020, 14 (05): : 1 - 16
  • [9] Oviposition activity and seasonal pattern of a population of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) in subtropical Argentina
    Micieli, MV
    Campos, RE
    MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2003, 98 (05): : 659 - 663
  • [10] Population genetic structure and competence as a vector for dengue type 2 virus of Aedes aegypti and Aedes albopictus from Madagascar
    Vazeille, M
    Mousson, L
    Rakatoarivony, I
    Villeret, R
    Rodhain, F
    Duchemin, JB
    Failloux, AB
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2001, 65 (05): : 491 - 497