Fusion Kalman filtration for distributed multisensor systems

被引:3
|
作者
Duda, Zdzislaw [1 ]
机构
[1] Silesian Tech Univ, Inst Automat Control, Ul Akad 16, PL-44101 Gliwice, Poland
来源
ARCHIVES OF CONTROL SCIENCES | 2014年 / 24卷 / 01期
关键词
fusion Kalman filtration; multisensor system; one step delay information; FILTERING FUSION;
D O I
10.2478/acsc-2014-0004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the paper, fusion state hierarchical filtration for a multisensor system is considered. An optimal global Kalman filter is realized by a central node in the information form. The state estimate depends on local information that should be sent by local nodes. Two information structures are considered in the paper. In the first case local estimates are based on the local measurement information. It leads to distributed Kalman filter fusion that is well known in a literature. In the second case local node has additionally global information of the system with one step delay. A synthesis of local filters is presented. An advantage of this structure is discussed.
引用
收藏
页码:53 / 65
页数:13
相关论文
共 50 条
  • [1] Distributed Kalman Filtering for State Constrained Systems with Multisensor
    Wen, Chuanbo
    Shang, Dongfang
    [J]. 2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 4787 - +
  • [2] Optimal distributed Kalman filtering fusion for multirate multisensor dynamic systems with correlated noise and unreliable measurements
    Yan, Liping
    Jiang, Lu
    Liu, Jun
    Xia, Yuanqing
    Fu, Mengyin
    [J]. IET SIGNAL PROCESSING, 2018, 12 (04) : 522 - 531
  • [3] Fusion of local Kalman filters for dynamic systems with multisensor environment
    Shin, V
    Minhas, R
    Choi, TS
    Lee, Y
    [J]. IKE '05: Proceedings of the 2005 International Conference on Information and Knowledge Engineering, 2005, : 269 - 273
  • [4] Track Fusion Fractional Kalman Filter for the Multisensor Descriptor Fractional Systems
    Zhang, Bo
    Shen, Haibin
    Yan, Guangming
    Sun, Xiaojun
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [5] Multisensor information fusion kalman smoother for time-varying systems
    Sun, Xiao-Jun
    Gao, Yuan
    Deng, Zi-Li
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 589 - 594
  • [6] Globally Optimal Distributed Kalman Filtering for Multisensor Systems with Unknown Inputs
    Ruan, Yali
    Luo, Yingting
    Zhu, Yunmin
    [J]. PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 2212 - 2216
  • [7] Globally Optimal Distributed Kalman Filtering for Multisensor Systems with Unknown Inputs
    Ruan, Yali
    Luo, Yingting
    Zhu, Yunmin
    [J]. SENSORS, 2018, 18 (09)
  • [8] Globally Optimal Multisensor Distributed Random Parameter Matrices Kalman Filtering Fusion with Applications
    Luo, Yingting
    Zhu, Yunmin
    Luo, Dandan
    Zhou, Jie
    Song, Enbin
    Wang, Donghua
    [J]. SENSORS, 2008, 8 (12) : 8086 - 8103
  • [9] Distributed Fusion Estimator for Multisensor Multirate Systems With Correlated Noises
    Lin, Honglei
    Sun, Shuli
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (07): : 1131 - 1139
  • [10] Multisensor covariance intersection fusion Kalman filters
    Qi, Wenjuan
    Zhang, Peng
    Deng, Zili
    Gao, Yuan
    [J]. MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 946 - 952