Land use/land cover characterization in Amazonia using COSMO-SkyMed multitemporal images

被引:3
|
作者
de Azevedo, Adriana Rodrigues [1 ]
dos Santos, Joao Roberto [2 ]
Gama, Fabio Furlan [2 ]
Lima de Alencastro Graca, Paulo Mauricio [3 ]
Mura, Jose Claudio [2 ]
机构
[1] Inst Chico Mendes Conservacao Biodiversidade ICMB, BR-70670350 Brasilia, DF, Brazil
[2] Coordenacao Observ Terra OBT INPE, Inst Nacl Pesquisas Espaciais, BR-12227010 Sao Paulo, Brazil
[3] Coordenadoria Dinam Ambiental CDAM INPA, Inst Nacl Pesquisas Amazonia, BR-69060001 Manaus, Amazonas, Brazil
关键词
radar; forest mapping; textural analysis; monitoring; TROPICAL RAIN-FOREST; TEXTURAL INFORMATION; ABOVEGROUND BIOMASS; BRAZILIAN AMAZON; SAR IMAGES; SIR-C; CLASSIFICATION; RADAR; FEATURES; REGION;
D O I
10.1590/S0044-59672014000100009
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The use of radar imagery is an alternative source of information to support the monitoring of the Amazon region, since the optical images have imaging limitations in tropical areas due to the occurrence of clouds. Therefore, the goal of this study is to analyze the radar images in X-band multi-temporal polarized obtained by COSMO-SkyMed satellite (COnstellation of small Satellites for Mediterranean basin Observation), in the intensity mode, isolated and/or combined with textural information, to thematic characterization of land use/land cover in the Humaita, Amazonas State region. The methodology used includes: analysis of the dual images obtained during two subsequent acquisitions, in order to explore the potential of the dataset as a quad-pol intensity; extraction of textural attributes from the co-occurrence matrix (Gray Level Co-occurrence Matrix) and subsequent contextual classification; statistical assessment of the thematic performance of the intensity and textural images, isolated and in polarized groups. Within the results achieved, the group formed only by the intensity images presented a better performance if compared to those containing the textural attributes. In this discrimination, the classes involved were forest, alluvial forest, reforestation, savannah, pasture and burned areas, yielding 66% overall accuracy and a Kappa value of 0.55. The results showed that X band images, from COSMO-SkyMed, StripMap mode (Ping-Pong), multi-polarized, presents a moderate potential to characterize and monitor the dynamics of land use/land land cover in the Brazilian Amazon.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 50 条
  • [1] FUSION OF RADARSAT-2 AND COSMO-SKYMED POLARIMETRIC IMAGES TO IMPROVE LAND COVER CLASSIFICATION
    Licciardi, G. A.
    Pratola, C.
    Del Frate, F.
    Schiavon, G.
    Solimini, D.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4978 - 4981
  • [2] Large area robust identification of snow cover from multitemporal COSMO-SkyMed images
    Pettinato, S.
    Santi, E.
    Paloscia, S.
    Aiazzi, B.
    Baronti, S.
    Palchetti, E.
    Garzelli, A.
    [J]. SAR IMAGE ANALYSIS, MODELING, AND TECHNIQUES XV, 2015, 9642
  • [3] Object-oriented classifications for land use/land cover using Cosmo-SkyMed and LandSat 7 satellite data: An example of Erbil/Iraq
    Al-Hameedawi, Amjed
    Buchroithner, Manfred
    [J]. 10TH EUROPEAN CONFERENCE ON SYNTHETIC APERTURE RADAR (EUSAR 2014), 2014,
  • [4] Characterization of Snow Cover Areas by Change Detection Applied to COSMO-SkyMed Images
    Pettinato, S.
    Santi, E.
    Paloscia, S.
    Aiazzi, B.
    Garzelli, A.
    [J]. PIERS 2013 STOCKHOLM: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2013, : 531 - 535
  • [5] MAPPING LAND USE COVER IN AMAZON REGION WITH COSMO SKYMED DATA
    Gomes, Alessandra Rodrigues
    Rodrigues Sadeck, Luis Waldyr
    Brandao, Waldiza Souza
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6539 - 6540
  • [6] AUTOMATIC GENERATION OF FREQUENTLY UPDATED LAND COVER PRODUCTS AT NATIONAL LEVEL USING COSMO-SKYMED SAR IMAGERY
    Carbone, F.
    Coletta, A.
    De Luca, G. F.
    Del Frate, F.
    Fasano, L.
    Schiavon, G.
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 3406 - 3409
  • [7] Wet Snow Cover Mapping Algorithm Based on Multitemporal COSMO-SkyMed X-Band SAR Images
    Schellenberger, Thomas
    Ventura, Bartolomeo
    Zebisch, Marc
    Notarnicola, Claudia
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (03) : 1045 - 1053
  • [8] COSMO-SKYMED AO PROJECTS - EXPLOITATION OF FRACTAL SCATTERING MODELS FOR COSMO-SKYMED IMAGES INTERPRETATION
    Di Martino, Gerardo d
    Iodice, Antonio
    Manzo, Mariarosaria
    Pepe, Antonio
    Pepe, Susi
    Riccio, Daniele
    Ruello, Giuseppe
    Sansosti, Eugenio
    Tizzani, Pietro
    Zinno, Ivana
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 5498 - 5501
  • [9] The Potential of COSMO-SkyMed SAR Images in Monitoring Snow Cover Characteristics
    Pettinato, S.
    Santi, E.
    Brogioni, M.
    Paloscia, S.
    Palchetti, E.
    Xiong, Chuan
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (01) : 9 - 13
  • [10] ROBUST CHANGE DETECTION FROM COSMO-SKYMED AND RADARSAT-2 MULTITEMPORAL IMAGES
    Garzelli, Andrea
    Moser, Gabriele
    Serpico, Sebastiano B.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5252 - 5255