Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier

被引:21
|
作者
dos Santos Farias, Diego Bispo [1 ]
Althoff, Daniel [1 ]
Rodrigues, Lineu Neiva [1 ,2 ]
Filgueiras, Roberto [1 ]
机构
[1] Fed Univ Vicosa UFV, Dept Agr Engn, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Embrapa Cerrados, Brazilian Agr Res Corp, BR-020,Km 18, BR-73310970 Planaltina, DF, Brazil
关键词
EVAPORATION;
D O I
10.1007/s00704-020-03380-4
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The reference evapotranspiration (ET0) estimates is important for water resources and irrigation management. The Penman-Monteith equation is known for its accuracy but requires a high number of climatic parameters that are not always available. Thus, this study aimed to evaluate the performance of machine learning techniques (cubist regression, artificial neural network with Bayesian regularization, support vector machine with linear kernel function) and stepwise multiple linear regression method to estimate daily ET(0)with limited weather data in a Brazilian agricultural frontier (MATOPIBA). Climatic data from 2000 to 2016 obtained from 23 weather stations were used. Five data scenarios were evaluated: (i) all variables, (ii) radiation and temperature, (iii) temperature and relative humidity, (iv) wind speed and temperature, and (v) temperature. The results showed that the machine learning methods are robust in estimating ET0, even in the absence of some variables. Among the methods evaluated using only temperature data, the cubist regression showed better performance. When estimating water demand for soybean and maize crops using only temperature, the cubist regression and calibrated Hargreaves-Samani equation showed the smallest errors.
引用
收藏
页码:1481 / 1492
页数:12
相关论文
共 50 条
  • [1] Performance evaluation of numerical and machine learning methods in estimating reference evapotranspiration in a Brazilian agricultural frontier
    Diego Bispo dos Santos Farias
    Daniel Althoff
    Lineu Neiva Rodrigues
    Roberto Filgueiras
    [J]. Theoretical and Applied Climatology, 2020, 142 : 1481 - 1492
  • [2] Performance Evaluation of Five Machine Learning Algorithms for Estimating Reference Evapotranspiration in an Arid Climate
    Raza, Ali
    Fahmeed, Romana
    Syed, Neyha Rubab
    Katipoglu, Okan Mert
    Zubair, Muhammad
    Alshehri, Fahad
    Elbeltagi, Ahmed
    [J]. WATER, 2023, 15 (21)
  • [3] Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration
    Wu, Tianao
    Zhang, Wei
    Jiao, Xiyun
    Guo, Weihua
    Hamoud, Yousef Alhaj
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 184
  • [4] Evaluation and Modelling of Reference Evapotranspiration Using Different Machine Learning Techniques for a Brazilian Tropical Savanna
    Spontoni, Thiago A.
    Ventura, Thiago M.
    Palacios, Rafael S.
    Curado, Leone F. A.
    Fernandes, Widinei A.
    Capistrano, Vinicius B.
    Fritzen, Clovis L.
    Pavao, Hamilton G.
    Rodrigues, Thiago R.
    [J]. AGRONOMY-BASEL, 2023, 13 (08):
  • [5] Evaluation of ten machine learning methods for estimating terrestrial evapotranspiration from remote sensing
    Carter, Corinne
    Liang, Shunlin
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 78 : 86 - 92
  • [6] Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods
    Chen, Zhijun
    Zhu, Zhenchuang
    Jiang, Hao
    Sun, Shijun
    [J]. JOURNAL OF HYDROLOGY, 2020, 591
  • [7] High performance machine learning approach for reference evapotranspiration estimation
    Mohammed S. Aly
    Saad M. Darwish
    Ahmed A. Aly
    [J]. Stochastic Environmental Research and Risk Assessment, 2024, 38 : 689 - 713
  • [8] High performance machine learning approach for reference evapotranspiration estimation
    Aly, Mohammed S.
    Darwish, Saad M.
    Aly, Ahmed A.
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2024, 38 (02) : 689 - 713
  • [9] Empirical and learning machine approaches to estimating reference evapotranspiration based on temperature data
    Reis, Matheus Mendes
    da Silva, Ariovaldo Jose
    Zullo Junior, Jurandir
    Tuffi Santos, Leonardo David
    Azevedo, Alcinei Mistico
    Goncalves Lopes, Erika Manuela
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2019, 165
  • [10] Sensitivity analysis of methods for estimating reference evapotranspiration and sugarcane evapotranspiration
    Silva, Bruce K. N.
    da Silva, Vicente de P. R.
    de Azevedo, Pedro V.
    Farias, Carlos H. de A.
    [J]. REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2011, 15 (10): : 1046 - 1053