REGRESSIONS WITH BERKSON ERRORS IN COVARIATES-A NONPARAMETRIC APPROACH

被引:21
|
作者
Schennach, Susanne M. [1 ]
机构
[1] Brown Univ, Dept Econ, Providence, RI 02912 USA
来源
ANNALS OF STATISTICS | 2013年 / 41卷 / 03期
基金
美国国家科学基金会;
关键词
Berkson measurement error; errors in variables; instrumental variables; nonparametric inference; nonparametric maximum likelihood; INSTRUMENTAL VARIABLE ESTIMATION; PARTICULATE AIR-POLLUTION; IN-VARIABLES; NONLINEAR MODELS; IDENTIFICATION; MORTALITY;
D O I
10.1214/13-AOS1122
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper establishes that so-called instrumental variables enable the identification and the estimation of a fully nonparametric regression model with Berkson-type measurement error in the regressors. An estimator is proposed and proven to be consistent. Its practical performance and feasibility are investigated via Monte Carlo simulations as well as through an epidemiological application investigating the effect of particulate air pollution on respiratory health. These examples illustrate that Berkson errors can clearly not be neglected in nonlinear regression models and that the proposed method represents an effective remedy.
引用
收藏
页码:1642 / 1668
页数:27
相关论文
共 50 条