No-Arbitrage and Hedging with Liquid American Options

被引:3
|
作者
Bayraktar, Erhan [1 ]
Zhou, Zhou [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Sydney, Sch Math & Stat, Camperdown, NSW 2006, Australia
基金
美国国家科学基金会;
关键词
semistatic trading strategies; liquid American options; fundamental theorem of asset pricing; subhedging/superhedging dualities;
D O I
10.1287/moor.2018.0932
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Since most of the traded options on individual stocks are of American type, it is of interest to generalize the results obtained in semistatic trading to the case when one is allowed to statically trade American options. However, this problem has proved to be elusive so far because of the asymmetric nature of the positions of holding versus shorting such options. Here, we provide a unified framework and generalize the fundamental theorem of asset pricing (FTAP) and hedging dualities in Bayraktar and Zhou [Bayraktar E, Zhou Z (2016) Arbitrage, hedging and utility maximization using semi-static trading strategies with American options. Ann. Appl. Probab. 26(6):3531-3558.] to the case where the investor can also short American options. Following Bayraktar and Zhou [Bayraktar E, Zhou Z (2016) Arbitrage, hedging, and utility maximization using semistatic trading strategies with American options. Ann. Appl. Probab. 26(6):3531-3558.], we assume that the longed American options are divisible. As for the shorted American options, we show that divisibility plays no role regarding arbitrage property and hedging prices. Then, using the method of enlarging probability spaces proposed in Deng and Tan [Deng S, Tan X (2016) Duality in nondominated discrete-time models for Americain options. ArXiv e-prints.], we convert the shorted American options to European options and establish the FTAP and subhedging and superhedging dualities in the enlarged space both with and without model uncertainty.
引用
收藏
页码:468 / 486
页数:19
相关论文
共 50 条
  • [1] Pricing by hedging and no-arbitrage beyond semimartingales
    Bender, Christian
    Sottinen, Tommi
    Valkeila, Esko
    [J]. FINANCE AND STOCHASTICS, 2008, 12 (04) : 441 - 468
  • [2] Pricing by hedging and no-arbitrage beyond semimartingales
    Christian Bender
    Tommi Sottinen
    Esko Valkeila
    [J]. Finance and Stochastics, 2008, 12 : 441 - 468
  • [3] MODEL-INDEPENDENT NO-ARBITRAGE CONDITIONS ON AMERICAN PUT OPTIONS
    Cox, Alexander M. G.
    Hoeggerl, Christoph
    [J]. MATHEMATICAL FINANCE, 2016, 26 (02) : 431 - 458
  • [4] Pathwise no-arbitrage in a class of Delta hedging strategies
    Schied, Alexander
    Voloshchenko, Iryna
    [J]. PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2016, 1
  • [5] NO-ARBITRAGE BOUNDS ON TWO ONE-TOUCH OPTIONS
    Tsuzuki, Yukihiro
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2015, 18 (03)
  • [6] No-Arbitrage Symmetries
    Iván Degano
    Sebastián Ferrando
    Alfredo González
    [J]. Acta Mathematica Scientia, 2022, 42 : 1373 - 1402
  • [7] No-arbitrage SABR
    Doust, Paul
    [J]. JOURNAL OF COMPUTATIONAL FINANCE, 2012, 15 (03) : 3 - 31
  • [8] A Model-Free No-arbitrage Price Bound for Variance Options
    Bonnans, J. Frederic
    Tan, Xiaolu
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2013, 68 (01): : 43 - 73
  • [9] A Model-Free No-arbitrage Price Bound for Variance Options
    J. Frédéric Bonnans
    Xiaolu Tan
    [J]. Applied Mathematics & Optimization, 2013, 68 : 43 - 73
  • [10] NO-ARBITRAGE SYMMETRIES
    Iván DEGANO
    Sebastián FERRANDO
    Alfredo GONZáLEZ
    [J]. Acta Mathematica Scientia, 2022, 42 (04) : 1373 - 1402