Blind Image Quality Assessment Based on Natural Redundancy Statistics

被引:4
|
作者
Yan, Jia [1 ]
Zhang, Weixia [1 ]
Feng, Tianpeng [1 ]
机构
[1] Wuhan Univ, Sch Elect & Informat, Wuhan, Hubei, Peoples R China
来源
关键词
SINGULAR-VALUE DECOMPOSITION;
D O I
10.1007/978-3-319-54190-7_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Blind image quality assessment (BIQA) aims to evaluate the perceptual quality of a distorted image without information regarding its reference image and the distortion type. Existing BIQA methods usually predict the image quality by employing natural scene statistic (NSS), which is derived from the statistical distributions of image coefficients by reducing the redundancies in a transformed domain. Contrary to these methods, we directly measure the redundancy existing in a natural image and compute the natural redundancy statistics (NRS) to capture the distortion degree. Specially, we utilize the singular value decomposition (SVD) and asymmetric generalized Gaussian distribution (AGGD) modeling to obtain NRS from opponent color spaces, and learn a regression model to map the NRS features to the subjective quality score. Extensive experiments demonstrate very competitive quality prediction performance and generalization ability of the proposed method.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 50 条
  • [1] Blind Image Quality Assessment Based on Natural Scene Statistics
    Soltanian, Najmeh
    Karimi, Nader
    Karimi, Maryam
    Samavi, Shadrokh
    2014 22ND IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2014, : 1749 - 1754
  • [2] Blind Image Quality Assessment Based on Natural Statistics of Double-Opponency
    Sybingco, Edwin
    Dadios, Elmer P.
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2018, 22 (05) : 725 - 730
  • [3] Efficient Feature Selection for Blind Image Quality Assessment based on Natural Scene Statistics
    Nizami, Imran Fareed
    Majid, Muhammad
    Khurshid, Khawar
    PROCEEDINGS OF 2017 14TH INTERNATIONAL BHURBAN CONFERENCE ON APPLIED SCIENCES AND TECHNOLOGY (IBCAST), 2017, : 318 - 322
  • [4] A NOVEL BLIND IMAGE QUALITY ASSESSMENT METHOD BASED ON REFINED NATURAL SCENE STATISTICS
    Ou, Fu-Zhao
    Wang, Yuan-Gen
    Zhu, Guopu
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1004 - 1008
  • [5] Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality
    Moorthy, Anush Krishna
    Bovik, Alan Conrad
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3350 - 3364
  • [6] Blind image quality assessment with improved natural scene statistics model
    Zhang, Yazhong
    Wu, Jinjian
    Xie, Xuemei
    Li, Leida
    Shi, Guangming
    DIGITAL SIGNAL PROCESSING, 2016, 57 : 56 - 65
  • [7] Blind Image Quality Assessment by Natural Scene Statistics and Perceptual Characteristics
    Liu, Yutao
    Gu, Ke
    Li, Xiu
    Zhang, Yongbing
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2020, 16 (03)
  • [8] Unsupervised blind image quality assessment based on joint structure and natural scene statistics features
    He, Qinglin
    Yang, Chao
    Yang, Fanxi
    An, Ping
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 87
  • [9] Blind Image Quality Assessment Using Natural Scene Statistics in the Gradient Domain
    Wang, Tonghan
    Shu, Huazhong
    Jia, Huizhen
    Li, Baosheng
    Zhang, Lu
    ASIA MODELLING SYMPOSIUM 2014 (AMS 2014), 2014, : 56 - 60
  • [10] Blind Image Quality Assessment Bases On Natural Scene Statistics And Deep Learning
    Ge, De
    Song, Jianxin
    PROCEEDINGS OF THE 2015 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCES AND AUTOMATION ENGINEERING, 2016, 42 : 939 - 945