Improving multiple sequence alignment biological accuracy through genetic algorithms

被引:5
|
作者
Orobitg, Miquel [1 ]
Cores, Fernando [1 ]
Guirado, Fernando [1 ]
Roig, Concepcio [1 ]
Notredame, Cedric [2 ,3 ]
机构
[1] Univ Lleida, Dept Comp Sci, Lleida, Spain
[2] Ctr Genom Regulat CRG, Bioinformat & Genom Program, Barcelona, Spain
[3] Univ Pompeu Fabra, Barcelona, Spain
来源
JOURNAL OF SUPERCOMPUTING | 2013年 / 65卷 / 03期
关键词
MSA; Evaluation; Genetic algorithm; OBJECTIVE FUNCTION; COFFEE;
D O I
10.1007/s11227-012-0856-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Accuracy on multiple sequence alignments (MSA) is of great significance for such important biological applications as evolution and phylogenetic analysis, homology and domain structure prediction. In such analyses, alignment accuracy is crucial. In this paper, we investigate a combined scoring function capable of obtaining a good approximation to the biological quality of the alignment. The algorithm uses the information obtained by the different quality scores in order to improve the accuracy. The results show that the combined score is able to evaluate alignments better than the isolated scores.
引用
收藏
页码:1076 / 1088
页数:13
相关论文
共 50 条
  • [1] Improving multiple sequence alignment biological accuracy through genetic algorithms
    Miquel Orobitg
    Fernando Cores
    Fernando Guirado
    Concepció Roig
    Cedric Notredame
    [J]. The Journal of Supercomputing, 2013, 65 : 1076 - 1088
  • [2] Improving the efficiency of multiple sequence alignment by genetic algorithms
    Seijas, J
    Morató, C
    Andina, D
    Vega-Corona, A
    [J]. ARTIFICIAL NEURAL NETS PROBLEM SOLVING METHODS, PT II, 2003, 2687 : 361 - 368
  • [3] Improving accuracy of multiple sequence alignment algorithms based on alignment of neighboring residues
    Lu, Yue
    Sze, Sing-Hoi
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 (02) : 463 - 472
  • [4] Multiple Sequence Alignment with Genetic Algorithms
    Botta, Marco
    Negro, Guido
    [J]. COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, 2010, 6160 : 206 - 214
  • [5] Multiple sequence alignment using parallel genetic algorithms
    Anbarasu, LA
    Narayanasamy, P
    Sundararajan, V
    [J]. SIMULATED EVOLUTION AND LEARNING, 1999, 1585 : 130 - 137
  • [6] MSAGA: Multiple sequence alignment using genetic algorithms
    Shyu, SJ
    Yin, PY
    [J]. 6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XII, PROCEEDINGS: INDUSTRIAL SYSTEMS AND ENGINEERING II, 2002, : 450 - 455
  • [7] Multiple sequence alignment based on genetic algorithms with reserve selection
    Chen, Yang
    Hu, Jinglu
    Hirasawa, Kotaro
    Yu, Songnian
    [J]. PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 1511 - +
  • [8] A team of genetic algorithms for the multiple sequence alignment problem: Preliminary results
    Brizuela, Carlos A.
    Luhrs-Olmos, Elizabeth
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 2767 - 2772
  • [9] Refining the progressive multiple sequence alignment score using genetic algorithms
    Ergezer, Halit
    Leblebicioglu, Kemal
    [J]. ARTIFICIAL INTELLIGENCE AND NEURAL NETWORKS, 2006, 3949 : 177 - 184
  • [10] Multiple Sequence Alignment Based on Genetic Algorithms with new Chromosomes representation
    Ben Othman, Mohamed Tahar
    Abdel-Azim, Gamil
    [J]. 2012 16TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE (MELECON), 2012, : 1030 - 1033