Atomic decomposition characterizations of weighted multiparameter Hardy spaces

被引:5
|
作者
Wu, Xinfeng [1 ]
机构
[1] China Univ Min & Technol Beijing, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Atomic decomposition; multiparameter Hardy spaces; A(infinity) weight; BOUNDEDNESS; VERSION;
D O I
10.1007/s11464-012-0213-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let w is an element of A(infinity). In this paper, we introduce weighted-(p,q) atomic Hardy spaces H-w(p,q) (R-n x R-m) for 0 < p <= 1, q > q(w) and show that the weighted Hardy space H-w(p) (R-n x R-m) defined via Littlewood-Paley square functions coincides with H-w(p,q) (R-n x R-m) for 0 < p <= 1, q > q(w). As applications, we get a general principle on the H-w(p) (R-n x R-m) to L-w(p)(R-n x R-m) boundedness and a boundedness criterion for two parameter singular integrals on the weighted Hardy spaces.
引用
收藏
页码:1195 / 1212
页数:18
相关论文
共 50 条