The Influence of Carbon Nanotube Aspect Ratio on Thermal Conductivity Enhancement in Nanotube-Polymer Composites

被引:22
|
作者
Kapadia, Rahul S. [1 ]
Louie, Brian M. [1 ]
Bandaru, Prabhakar R. [1 ]
机构
[1] Univ Calif San Diego, Dept Mech Engn, San Diego, CA 92093 USA
来源
关键词
carbon nanotubes; filled polymers; nanocomposites; percolation; thermal conductivity; effective medium theory; thermal interface resistance; and kaptiza resistance; EPOXY COMPOSITES; RESISTANCE; PERCOLATION;
D O I
10.1115/1.4025047
中图分类号
O414.1 [热力学];
学科分类号
摘要
We report and model a linear increase in the thermal conductivity (j) of polymer composites incorporated with relatively low length/diameter aspect ratio multiwalled carbon nanotubes (CNTs). There was no evidence of percolation-like behavior in the k, at/close to the theoretically predicted threshold, which was attributed due to the interfacial resistance between the CNT and the polymer matrix. Concomitantly, the widely postulated high thermal conductivity of CNTs does not contribute to the net thermal conductivity of the composites. Through estimating the interfacial resistance and the thermal conductivity of the constituent CNTs, we conclude that our experimental and modeling approaches can be used to study thermal transport behavior in nanotube-polymer composites.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Thermal properties and percolation in carbon nanotube-polymer composites
    Bonnet, P.
    Sireude, D.
    Garnier, B.
    Chauvet, O.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (20)
  • [2] Development and thermal properties of carbon nanotube-polymer composites
    Jackson, Enrique M.
    Laibinis, Paul E.
    Collins, Warren E.
    Ueda, Akira
    Wingard, Charles D.
    Penn, Benjamin
    [J]. COMPOSITES PART B-ENGINEERING, 2016, 89 : 362 - 373
  • [3] Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube-polymer interactions
    Zeng, You
    Liu, Pengfei
    Du, Jinhong
    Zhao, Long
    Ajayan, Pulickel M.
    Cheng, Hui-Ming
    [J]. CARBON, 2010, 48 (12) : 3551 - 3558
  • [4] Influence of Carbon Nanotube Spatial Distribution on Electromagnetic Properties of Nanotube-Polymer Composites
    Moseenkov, Sergey I.
    Krasnikov, Dmitry V.
    Suslyaev, Valentin I.
    Korovin, Evgeniy Yu.
    Dorozhkin, Kiril V.
    Kuznetsov, Vladimir L.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2018, 255 (01):
  • [5] Thermal conductivity of Polymer/Carbon nanotube composites
    Haddadi, Manel
    Agoudjil, Boudjemaa
    Boudenne, Abderrahim
    [J]. POLYMER COMPOSITE MATERIALS: FROM MACRO, MICRO TO NANOSCALE, 2012, 714 : 99 - +
  • [6] Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites
    Wei, CY
    Srivastava, D
    Cho, KJ
    [J]. NANO LETTERS, 2002, 2 (06) : 647 - 650
  • [7] EMI shielding and conductivity of carbon nanotube-polymer composites at terahertz frequency
    Polley, Debanjan
    Barman, Anjan
    Mitra, Rajib Kumar
    [J]. OPTICS LETTERS, 2014, 39 (06) : 1541 - 1544
  • [8] Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites
    Deng, Fei
    Zheng, Quan-Shui
    Wang, Li-Feng
    Nan, Ce-Wen
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (02)
  • [9] Carbon nanotube-polymer composites for photonic devices
    Scardaci, V.
    Rozhin, A. G.
    Hennrich, F.
    Milne, W. I.
    Ferrari, A. C.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 37 (1-2): : 115 - 118
  • [10] Circuit elements in carbon nanotube-polymer composites
    Hsu, WK
    Kotzeva, V
    Watts, PCP
    Chen, GZ
    [J]. CARBON, 2004, 42 (8-9) : 1707 - 1712