Sequential prediction-error method for structural identification

被引:20
|
作者
Yun, CB [1 ]
Lee, HJ [1 ]
Lee, CG [1 ]
机构
[1] KOREA HWY CO,HWY RES INST,STRUCT DIV,SEOUL,SOUTH KOREA
来源
JOURNAL OF ENGINEERING MECHANICS-ASCE | 1997年 / 123卷 / 02期
关键词
D O I
10.1061/(ASCE)0733-9399(1997)123:2(115)
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Time-domain methods for the identification of linear structural dynamic systems are studied. The stochastic autoregressive and moving average (ARMAX) model is used to process the measured excitation and response records contaminated by noises. The study focuses on the sequential prediction-error method incorporating several techniques for improving the parameter estimation. They are the exponential data weighting, the global data weighting, and the square-root estimation techniques. Efficient procedures of the square-root estimation are developed for the multi-input and multioutput (MIMO) case as well as the multi-input and single-output (MISO) case. Verifications of the present methods are carried out using the simulated time histories for the input excitation and output response, as well as using the experimental data on a building model. The results indicate that the square-root estimation technique is particularly effective for improving the convergence and accuracy of the sequential estimation, even with crude initial guesses.
引用
收藏
页码:115 / 122
页数:8
相关论文
共 50 条
  • [1] Dynamic Network Identification Using the Direct Prediction-Error Method
    Dankers, Arne
    Van den Hof, Paul M. J.
    Heuberger, Peter S. C.
    Bombois, Xavier
    [J]. 2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 901 - 906
  • [2] MPC-Relevant prediction-error identification
    Jorgensen, John Bagterp
    Jorgensen, Sten Bay
    [J]. 2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 2475 - +
  • [3] On the accuracy in errors-in-variables identification compared to prediction-error identification
    Hjalmarsson, Hakan
    Martensson, Jonas
    Rojas, Cristian R.
    Soderstrom, Torsten
    [J]. AUTOMATICA, 2011, 47 (12) : 2704 - 2712
  • [4] Streaming prediction-error filters
    Fomel, Sergey
    Claerbout, Jon
    [J]. Geophysics, 2024, 89 (05)
  • [5] Informative Data and Identifiability in LPV-ARX Prediction-Error Identification
    Dankers, Arne G.
    Toth, Roland
    Heuberger, Peter S. C.
    Bombois, Xavier
    Van den Hof, Paul M. J.
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 799 - 804
  • [6] Prediction-error identification of LPV systems: A nonparametric Gaussian regression approach
    Darwish, Mohamed Abdelmonim Hassan
    Cox, Pepijn Bastiaan
    Proimadis, Ioannis
    Pillonetto, Gianluigi
    Toth, Roland
    [J]. AUTOMATICA, 2018, 97 : 92 - 103
  • [7] ON CRITERION SELECTION AND NOISE MODEL PARAMETRIZATION FOR PREDICTION-ERROR IDENTIFICATION METHODS
    SODERSTROM, T
    STOICA, P
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1981, 34 (04) : 801 - 811
  • [8] Prediction-error based reversible watermarking
    Thodi, DM
    Rodríguez, JJ
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1549 - 1552
  • [9] Reversible watermarking by prediction-error expansion
    Thodi, DM
    Rodríguez, JJ
    [J]. 6TH IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, 2004, : 21 - 25
  • [10] Prediction-error approximation by convex optimization
    Lindquist, Anders
    [J]. MODELING, ESTIMATION AND CONTROL: FESTSCHRIFT IN HONOR OF GIORGIO PICCI ON THE OCCASION OF THE SIXTY-FIFTH BIRTHDAY, 2007, 364 : 239 - 249