Convergence and Applications of a Gossip-Based Gauss-Newton Algorithm

被引:24
|
作者
Li, Xiao [1 ]
Scaglione, Anna [1 ]
机构
[1] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
Gauss-Newton; gossip; distributed; convergence; MAXIMUM-LIKELIHOOD-ESTIMATION; DISTRIBUTED STATE ESTIMATOR; SUBGRADIENT METHODS; LEAST-SQUARES; CONSENSUS; OPTIMIZATION; STRATEGIES; NETWORKS; SYSTEM;
D O I
10.1109/TSP.2013.2276440
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Gauss-Newton algorithm is a popular and efficient centralized method for solving non-linear least squares (NLLS) problems. In this paper, a multi-agent distributed version of this algorithm is proposed to solve general NLLS problems in a network, named Gossip-based Gauss-Newton (GGN) algorithm. Furthermore, we analyze and present sufficient conditions for its convergence and show numerically that the GGN algorithm achieves performance comparable to the centralized algorithm, with graceful degradation in case of network failures. More importantly, the GGN algorithm provides significant performance gains compared to other distributed first order methods.
引用
收藏
页码:5231 / 5246
页数:16
相关论文
共 50 条
  • [1] CONVERGENCE ANALYSIS OF THE GENERAL GAUSS-NEWTON ALGORITHM
    SCHABACK, R
    [J]. NUMERISCHE MATHEMATIK, 1985, 46 (02) : 281 - 309
  • [2] A Robust Gauss-Newton Algorithm for the Optimization of Hydrological Models: From Standard Gauss-Newton to Robust Gauss-Newton
    Qin, Youwei
    Kavetski, Dmitri
    Kuczera, George
    [J]. WATER RESOURCES RESEARCH, 2018, 54 (11) : 9655 - 9683
  • [3] Convergence and application of a modified iteratively regularized Gauss-Newton algorithm
    Smirnova, Alexandra
    Renaut, Rosemary A.
    Khan, Taufiquar
    [J]. INVERSE PROBLEMS, 2007, 23 (04) : 1547 - 1563
  • [4] Convergence analysis of inexact Gauss-Newton
    [J]. Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 1997, 14 (04): : 1 - 7
  • [5] On the Local Convergence of the Gauss-Newton Method
    Argyros, Ioannis K.
    Hilout, Said
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2009, 41 : 23 - 33
  • [6] Convergence analysis of a proximal Gauss-Newton method
    Saverio Salzo
    Silvia Villa
    [J]. Computational Optimization and Applications, 2012, 53 : 557 - 589
  • [7] Analysis Local Convergence of Gauss-Newton Method
    Siregar, Rahmi Wahidah
    Tulus
    Ramli, Marwan
    [J]. 4TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH (INTERIOR), 2018, 300
  • [8] Convergence analysis of a proximal Gauss-Newton method
    Salzo, Saverio
    Villa, Silvia
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (02) : 557 - 589
  • [9] Convergence of Gauss-Newton's method and uniqueness of the solution
    Chen, JH
    Li, WG
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 686 - 705
  • [10] On convergence rates for the iteratively regularized Gauss-Newton method
    Blaschke, B
    Neubauer, A
    Scherzer, O
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) : 421 - 436