Minimal blow-up solutions of mass-critical inhomogeneous Hartree equation

被引:16
|
作者
Cao, Daomin [1 ]
Su, Yiming [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
关键词
GLOBAL WELL-POSEDNESS; SCHRODINGER-EQUATIONS; SCATTERING;
D O I
10.1063/1.4850879
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we are concerned with the Cauchy problem of the inhomogeneous Hartree equation: iu(t) = -Delta u - k(x)(integral(RN) k(y)/vertical bar x-y vertical bar(2) vertical bar u(t, y)vertical bar(2)dy) u(t, x), x epsilon R-N, N >= 3. First, we establish the mass concentration property of the blow-up solutions. Second, we show that the blow-up solutions with minimal mass should concentrate at a critical point of k. Finally, under certain assumptions on global maximum points of k we establish nonexistence of such solutions. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:25
相关论文
共 50 条