Infinite step billiards

被引:0
|
作者
Esposti, MD [1 ]
机构
[1] Univ Bologna, Dipartmento Matemat, I-40127 Bologna, Italy
关键词
D O I
10.1142/9789812794598_0007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In [DDL] and [DDL2] (in collaboration with G. Del Magno e M. Lenci) we defined a class of non-compact polygonal billiards, the infinite step billiards: to a given sequence of non-negative numbers {p(n)}nis an element ofN, such that p(n) SE arrow 0, there corresponds a table P WEN [n, n + 1] X [0, p(n)]. The aim of this contribution is to overwiew some of these results. In particular we will focus on the ergodic and topological properties of these non-compact dynamical systesm. We show that generically these systems are ergodic for almost all initial velocities, and the entropy with respect to a wide class of measures is zero.
引用
收藏
页码:124 / 139
页数:16
相关论文
共 50 条
  • [1] Escape orbits and ergodicity in infinite step billiards
    Esposti, MD
    Del Magno, G
    Lenci, M
    [J]. NONLINEARITY, 2000, 13 (04) : 1275 - 1292
  • [2] Billiards in infinite polygons
    Troubetzkoy, S
    [J]. NONLINEARITY, 1999, 12 (03) : 513 - 524
  • [3] Problem of transport in billiards with infinite horizon
    Courbage, M.
    Edelman, M.
    Fathi, S. M. Saberi
    Zaslavsky, G. M.
    [J]. PHYSICAL REVIEW E, 2008, 77 (03):
  • [4] Anomalous diffusion in infinite horizon billiards
    Armstead, DN
    Hunt, BR
    Ott, E
    [J]. PHYSICAL REVIEW E, 2003, 67 (02):
  • [5] Infinite genus surfaces and irrational polygonal billiards
    Ferrán Valdez
    [J]. Geometriae Dedicata, 2009, 143 : 143 - 154
  • [6] Invisibility in Billiards is Impossible in an Infinite Number of Directions
    Plakhov, Alexander
    Roshchina, Vera
    [J]. JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (04) : 671 - 679
  • [7] Semidispersing billiards with an infinite cusp. II
    Lenci, M
    [J]. CHAOS, 2003, 13 (01) : 105 - 111
  • [8] Infinite genus surfaces and irrational polygonal billiards
    Valdez, Ferran
    [J]. GEOMETRIAE DEDICATA, 2009, 143 (01) : 143 - 154
  • [9] Invisibility in Billiards is Impossible in an Infinite Number of Directions
    Alexander Plakhov
    Vera Roshchina
    [J]. Journal of Dynamical and Control Systems, 2019, 25 : 671 - 679
  • [10] On the decay of correlations in Sinai billiards with infinite horizon
    Dahlqvist, P
    Artuso, R
    [J]. PHYSICS LETTERS A, 1996, 219 (3-4) : 212 - 216