Allometric equations for biomass assessment of subalpine dwarf shrubs

被引:28
|
作者
Elzein, Tasneem M. [1 ,2 ]
Blarquez, Olivier [1 ,2 ]
Gauthier, Olivier [1 ,2 ]
Carcaillet, Christopher [1 ,2 ]
机构
[1] Univ Montpellier 2, Ctr Bioarchaeol & Ecol, UMR5059, CNRS,Inst Bot, F-34090 Montpellier, France
[2] Ecole Prat Hautes Etud, Inst Bot, Paleoenvironm & Chronoecol PALECO EPHE, F-34090 Montpellier, France
关键词
Method; Mountain; Ecosystem; Disturbance; Avalanche; Forest; LAND-USE CHANGES; PINE FOREST; VEGETATION; DYNAMICS; VOLUME; IMPACT; AGE;
D O I
10.1007/s00035-011-0095-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Shrubs are an important component of mountain ecosystems in terms of productivity and diversity. The estimate of shrub biomass via allometric equations represents a non-destructive alternative to obtain quantitative data. We propose allometric equations to estimate aboveground biomass from easily acquirable descriptive parameters of plant height and cover using linear models for five of the most abundant subalpine shrub species in European mountain or boreal ecosystems: Rhododendron ferrugineum, Vaccinium myrtillus, V. uliginosum, V. vitisidaea and Juniperus sibirica. Samples used for the establishment of the equations are from non- disturbed Pinus cembra- Larix decidua stands, and from adjacent stands frequently disturbed by snow avalanches. The equations adequately predict shrub biomass for all species except V. uliginosum. They thus provide a useful and nondestructive method for estimating aboveground shrub biomass in subalpine ecosystems.
引用
收藏
页码:129 / 134
页数:6
相关论文
共 50 条
  • [1] Allometric equations for biomass assessment of subalpine dwarf shrubs
    Tasneem M. Elzein
    Olivier Blarquez
    Olivier Gauthier
    Christopher Carcaillet
    [J]. Alpine Botany, 2011, 121 : 129 - 134
  • [2] Allometric equations for estimating aboveground biomass for common shrubs in northeastern California
    Huff, Steve
    Ritchie, Martin
    Temesgen, H.
    [J]. FOREST ECOLOGY AND MANAGEMENT, 2017, 398 : 48 - 63
  • [3] Allometric equations for estimating biomass of natural shrubs and young trees of subtropical forests
    Chen, Jinlei
    Fang, Xi
    Wu, Anchi
    Xiang, Wenhua
    Lei, Pifeng
    Ouyang, Shuai
    [J]. NEW FORESTS, 2024, 55 (01) : 15 - 46
  • [4] Allometric equations for estimating biomass of natural shrubs and young trees of subtropical forests
    Jinlei Chen
    Xi Fang
    Anchi Wu
    Wenhua Xiang
    Pifeng Lei
    Shuai Ouyang
    [J]. New Forests, 2024, 55 : 15 - 46
  • [5] Biomass distribution of two subalpine dwarf-shrubs in relation to soil moisture and nutrient content
    Gerdol, R
    Anfodillo, T
    Gualmini, M
    Cannone, N
    Bragazza, L
    Brancaleoni, L
    [J]. JOURNAL OF VEGETATION SCIENCE, 2004, 15 (04) : 457 - 464
  • [6] Multispecies allometric equations for shrubs and trees biomass prediction in a Guinean savanna (West Africa)
    Kouame, Yao Anicet Gervais
    Millan, Mathieu
    N'Dri, Aya Brigitte
    Charles-Dominique, Tristan
    Konan, Marcel
    Bakayoko, Adama
    Gignoux, Jacques
    [J]. SILVA FENNICA, 2022, 56 (02)
  • [7] Allometric regression equations to determine aerial biomasses of Mediterranean shrubs
    Uso, JL
    Mateu, J
    Karjalainen, T
    Salvador, P
    [J]. PLANT ECOLOGY, 1997, 132 (01) : 59 - 69
  • [8] Allometric regression equations to determine aerial biomasses of Mediterranean shrubs
    J. L. Usó
    J. Mateu
    T. Karjalainen
    P. Salvador
    [J]. Plant Ecology, 1997, 132 : 59 - 69
  • [9] Developing allometric models to predict the individual aboveground biomass of shrubs worldwide
    Conti, G.
    Gorne, L. D.
    Zeballos, S. R.
    Lipoma, M. L.
    Gatica, G.
    Kowaljow, E.
    Whitworth-Hulse, J. I.
    Cuchietti, A.
    Poca, M.
    Pestoni, S.
    Fernandes, P. M.
    [J]. GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2019, 28 (07): : 961 - 975
  • [10] Logistic model outperforms allometric regression to estimate biomass of xerophytic shrubs
    Ma, Jiemin
    Yuan, Chuan
    Zhou, Jiayu
    Li, Yan
    Gao, Guangyao
    Fu, Bojie
    [J]. ECOLOGICAL INDICATORS, 2021, 132